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Abstract

We consider the question of how to solve inverse problems of the form e
At

x(0) = x(t) for an unkown
matrix A, given measurements of x(t) at different time points. Problems of this form have applications in
reverse engineering gene networks. In particular, we examine the cases where A is circulant and Toeplitz.
We are also able to extend our findings of the circulant case to some generalizations of circulant matrices.

Introduction

DNA Microarrays can be used to determine measurements of cellular gene products at a given point
in time. These concentrations of gene product provide clues to the overall interaction of the genes in the
gene network being studied. We can measure the perturbations x1, . . . , xn of the gene mRNA expression
concentrations from the steady state, which are governed by the equation

dx(t)

dt
= Ax(t), (1)

where x(t) = (x1(t), . . . , xn(t))T . In other words, the rates of change of the gene product concentrations are
determined by the deviations from the steady state of all the gene products present. If A is unstructured,
then A contains n2 degrees of freedom, so we would expect that n2 concentration measurements would suffice
to determine A uniquely. However, measuring the given gene product concentrations at a particular time
is both time consuming and expensive. Gene networks can be on the order of 10,000 genes, so taking 108

measurements is impossible. Hence, we would like to impose some structure on A that will allow us to take
fewer gene concentration measurements, enabling us to determine A more easily. This will provide a solution
to our gene network which is easy to find and can provide a starting point for determining the exact structure
of the gene network. In particular, we will first study the case where A is circulant and the case where A is
Toeplitz. It is expected that if A is circulant, then A can be uniquely determined from a measurement of the
n gene products at a single point in time. This seems intuitive since a circulant A contains only n degrees
of freedom. If A is Toeplitz, we expect A may be determined by the measurement of the n gene products
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at two points in time since Toeplitz A contains 2n − 1 degrees of freedom. Once A is determined, the gene
product concentrations for any time t are given by

x(t) = eAt x0, (2)

where x0 = x(0) is the vector of gene product deviations from the steady state caused by a perturbation to
the system at t = 0.

Circulant Matrices

Circulant matrices are those square matrices C of the form

C = circ(c1, c2, . . . , cn) =













c1 c2 c3 · · · cn

cn c1 c2 · · · cn−1

cn−1 cn c1 · · · cn−2

...
...

. . .
...

c2 c3 · · · · · · c1













.

It is instructive to consider what a graph of a four gene network represented by equation (1) looks like when
A is a circulant. Let A = circ(a, b, c, d). Then equation (1) becomes







x′

1(t)
x′

2(t)
x′

3(t)
x′

4(t)






=







a b c d
d a b c
c d a b
b c d a













x1(t)
x2(t)
x3(t)
x4(t)






.

Figure 1 below represents the graph of a 4 gene network. Genes x1, . . . , x4 are represented by the circles
numbered 1 through 4. Interactions between genes are indicated by arrows drawn between the genes, with
weights to describe the amount of effect one gene has on another. We say, for example that gene 1 “feels”
itself with a weight of a, gene 2 with a weight of b, gene 3 with a weight of c, and gene 4 with a weight of d.
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Fig. 1 Graph of a four gene network with circulant A

Circulant matrices have nice properties that provide an elegant solution to our problem. In particular,
all circulant matrices of order n are diagonalizable by the Fourier matrix Fn, where

F ∗

n =
1√
n













1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ω(n − 1) ω2(n−1) · · · ω(n−1)(n−1)













,
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and ω = e
2πi
n [1]. From now on we will simply use F to denote the Fourier matrix of order n. Hence, if A

is circulant, we have that A = F ∗ΛF , where Λ = diag(λ1, . . . , λn) and λ1, . . . , λn are the eigenvalues of A
repeated according to multiplicity. Also, we have that F is unitary [1], ie. FF ∗ = F ∗F = I.

Let us consider the matrix exponential in (2), utilizing its Taylor series representation. We have that

eAt = I + At +
1

2!
A2t2 +

1

3!
A3t3 + . . .

= F ∗F + F ∗ΛFt +
1

2!
(F ∗ΛF )2t2 +

1

3!
(F ∗ΛF )3t3 + . . .

= F ∗(I + Λt +
1

2!
Λ2t2 +

1

3!
Λ3t3 + . . .)F

= F ∗eΛtF. (3)

Now, let us suppose that we take a measurement of the mRNA concentrations at a specific time tm > 0.
This means that we know x(tm) and would like to show that we can solve for A in (2). Hence, from (3) we
have that

x(tm) = eAtmx0

= F ∗eΛtmFx0.

Multiplying both sides by F, and defining x̂(t) = Fx(t) to be the Discrete Fourier Transform of x(t), we get

x̂(tm) = FF ∗eΛtmFx0

= eΛtm x̂0. (4)

Since Λtm is a diagonal matix, eΛtm = diag(eλ1tm , . . . , eλntm), and we obtain that

x̂(tm) =











eλ1tm 0 · · · 0

0 eλ2tm
. . .

...
...

. . .
. . . 0

0 · · · 0 eλntm











x̂0.

In other words,
x̂j(tm) = eλjtm x̂j(0) for all j ∈ {1, . . . , n}. (5)

Equation (5) can be solved for each λj , and a circulant matrix A = F ∗ΛF satisfying x(tm) = eAtmx0 can
be determined since A is circulant for any values of λ1, . . . , λn. We would like to show that A is unique since
we desire to determine A with only one measurement. Assume that eA1tmx0 = eA2tmx0 for two circulants
A1 and A2. Suppose that A1 = F ∗Λ1F and A2 = F ∗Λ2F for diagonal matrices Λ1 = diag(λ1, . . . , λn) and
Λ2 = diag(µ1, . . . , µn). We get that F ∗eΛ1tmFx0 = F ∗eΛ2tmFx0. Hence eΛ1tm x̂0 = eΛ2tm x̂0. It follows that

eλjtm = eµjtm for all j ∈ {1, . . . , n}. (6)

Let j ∈ {1, . . . , n} be given. Let λjtm = a + bi and µjtm = c + di, a, b, c, d ∈ �
. From (6) we get that

ea+bi = ec+di. This implies eaebi = ecedi. In other words, ea(cos b + i sin b) = ec(cos d + i sind). Equating
the real and imaginary parts, we obtain ea cos b = ec cos d and ea sin b = ec sin d. Since sin b2 + cos b2 =
sin d2 + cos d2 = 1, we have that e2a = e2c. Thus, a, c ∈ �

implies a = c. Also, it can be seen that b and
d must differ by a multiple of 2π since cos b = cos d, and sin b = sind, ie. d = b + 2πkj , kj ∈ �. Hence,

µjtm = a + (b + 2πkj)i. Dividing by tm, we get µj = a+bi
tm

+
2πkj

tm
i. We conclude that

µj = λj +
2πkj

tm
i, for some kj ∈ �. (7)
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In other words, solving equation (5) for each λj does not necessarily produce a unique solution. Hence, one
time measurement will not suffice to determine λ1, . . . , λn due to the periodicity inherent in the exponential
function. However, in the case that each eλjtm is real valued, we can solve for λj uniquely. Whenever
A is symmetric, we are guaranteed real eigenvalues [2]. Thus, when A is a symmetric circulant, one time
measurement will suffice to determine A uniquely. This leads to the following statement.

Theorem 1: Let x0 = x(0) be given. When A is a symmetric circulant, eAtx0 = x(t) can be solved
uniquely for A with a value of x(t) at a single time tm.

In order to assure that we are able to determine λ1, . . . , λn uniquely in the non-symmetric case, it is
necessary to take a second measurement of x(t) at a later time. However, there are restrictions on when the
second time measurement can occur.

Suppose that we take measurements of x(t) at different times t1 and t2. Then we know that x̂j(t1) =
eλjt1 x̂j(0) and x̂j(t2) = eλjt2 x̂j(0), for j = 1, . . . , n. Suppose that we find two different values µ and σ that
satisfy both equations for λj . We have that eµt1 = eσt1 and eµt2 = eσt2 . From the results of equation (7),
we see that µ = σ + 2πn

t1
i and µ = σ + 2πm

t2
i, for some n, m ∈ �. Since µ 6= σ, m and n are nonzero integers.

Thus, 2πn
t1

= 2πm
t2

, which implies

t2
t1

=
m

n
, for nonzero integers m, n. (8)

Hence, if t2/t1 /∈ � , then µ = σ and we have that λj may be solved for uniquely with values of x(t1) and
x(t2). We obtain the following theorem.

Theorem 2: Let x0 = x(0) be given. When A is a general circulant, eAtx0 = x(t) can be solved uniquely
for A with values of x(t) at two distinct times t1 and t2, provided that the ratio of t2 to t1 is an irrational
number.

The question remains whether taking more than two time measurements of x(t) will allow us to de-
termine A uniquely without taking a measurement of x(t) at an irrational time. Suppose that we know
x(t1), x(t2), . . . , x(tm), where t1, . . . , tm ∈ � . Let A = F ∗ΛF , where Λ = diag(λ1, . . . , λn). Let λj ∈
{λ1, . . . , λn} be given. Then eλjt1 x̂j(0) = x̂j(t1), e

λjt2 x̂j(0) = x̂j(t2), . . . , e
λjtm x̂j(0) = x̂j(tm). Suppose

that there exist two complex numbers µ and σ that satisfy these equations for λj . Then by equation (7)
σ = µ + 2πk1

t1
i = µ + 2πk2

t2
i = . . . = µ + 2πkm

tm
i, k1, . . . , km ∈ �. Let tj = aj/bj, aj , bj ∈ �+, for j = 1, . . . , n.

Then we have that σ = µ + 2πk1b1
a1

i = µ + 2πk2b2
a2

i = . . . = µ + 2πkmbm

am
i. Let γ = lcm(a1, . . . , am) be the

least common multiple of a1, . . . , am. We have that σ = µ + 2πk1b1
γ

i = µ + 2πk2b2
γ

i = . . . = µ + 2πkmbm

γ
i,

where kd ∈ γ
ad
� for d = 1, . . . , m. Let δ = lcm(γb1

a1
, . . . , γbm

am
). Then these m equalities reduce to the equality

σ = µ + 2π
γ

ki, where k ∈ δ� is arbitrary. Hence, the m measurements at rational times t1, . . . , tm do not
determine λj uniquely. Therefore, we may revise Theorem 2.

Theorem 2′: Let x0 = x(0) be given. In order to uniquely solve the inverse problem eAtx0 = x(t) for
circulant A, it is necessary and sufficient take measurements of x(t) at two distinct times t1 and t2, such
that the ratio of t2 to t1 is an irrational number.

Thus, by taking one time measurement in the case that circulant A is symmetric or two time measure-
ments in the general case, we are able to determine A uniquely. As said before, this solution to equation
(1) for A circulant can provide a starting point from which to determine a better model for the gene network.

Block Circulant Matrices with Circulant Blocks

An interesting and similar result to our solution for A circulant holds when A is assumed to be a block
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circulant matrix with circulant blocks. These are matrices of the form

Am,n =









C1 C2 · · · Cm

Cm C1 · · · Cm−1

...
...

. . .
...

C2 C3 · · · C1









,

where each Cj , j = 1, . . . , m, is a circulant matrix of order n. For notational ease we will say that an m×m
block circulant matrix with n×n circulant blocks is of the class BCCBm,n[1].

It is important to note that a matrix in BCCBm,n is not necessarily circulant, and the topology of a
general four gene network with A ∈ BCCBm,n differs from the topology of the circulant case in Figure 1.
Consider the matrix

A =







a b c d
b a d c
c d a b
d c b a






∈ BCCB2,2.

Figure 2 below shows the graph of the four gene network determined by A from equation (1).

b

b

dd

1 2

34

cc

a a

a a

Fig. 2 Graph of a four gene network with A in BCCB2,2

Also, suppose that matrix A has order p. When solving equation (2) for a matrix A that is block circulant
with circulant blocks, we must take into consideration both the number of blocks and the size of the circulant
blocks. Suppose that p = mn and p = qr, m, n, q, r ∈ �+. We can find different solutions for A based on
whether we take A ∈ BCCBm,n or A ∈ BCCBq,r. For example, the matrices

A1 =















a b c d e f
b a d c f e
e f a b c d
f e b a d c
c d e f a b
d c f e b a















∈ BCCB3,2 and A2 =















a b c d e f
c a b f d e
b c a e f d
d e f a b c
f d e c a b
e f d b c a















∈ BCCB2,3

are both 6×6 block circulant matrices with circulant blocks. However, they are clearly not equivalent and do
not represent the same gene network. This fact may prove useful when reverse engineering the gene network
using a number of measurements of the gene product concentrations. One type of BCCB matrix may serve
as a better model to start from than another when reverse engineering the gene network.

Let us suppose that A ∈ BCCBm,n. Thus, A is a matrix of order mn. Then, we know that A is in
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BCCBm,n if and only if it may be diagonalized by the unitary matrix

Fm⊗Fn =
1√
n













Fn Fn Fn · · · Fn

Fn ω̄Fn ω̄2Fn · · · ω̄m−1Fn

Fn ω̄2Fn ω̄4Fn · · · ω̄2(m−1)Fn
...

...
...

. . .
...

Fn ω̄(m−1)Fn ω̄2(m−1)Fn · · · ω̄(m−1)(m−1)Fn













,

where Fm and Fn are the Fourier matrices of order m and n respectively, Fm ⊗ Fn is their direct or
Kronecker product, and ω = e

2πi
n as defined above [1]. Hence, we have that A = (Fm ⊗ Fn)∗Λ(Fm ⊗ Fn)

where Λ = diag(λ1, λ2, . . . , λmn). We can now obtain an analog to equation (3) for A ∈ BCCBm,n, namely

eAt = (Fm ⊗ Fn)∗eΛt(Fm ⊗ Fn). (9)

Now, consider the equation x(t) = eAtx0. When A ∈ BCCBm,n we have x(tm) = (Fm⊗Fn)∗eΛt(Fm⊗Fn).
Left multiplying both sides by (Fm ⊗ Fn) and defining x̃(t) = (Fm ⊗ Fn)x(t), we get (Fm ⊗ Fn)∗x(t) =
(Fm ⊗ Fn)(Fm ⊗ Fn)∗eΛt(Fm ⊗ Fn)x0. Since Fm ⊗ Fn is unitary,

x̃(t) = eΛtx̃0, and (10)

x̃j(t) = eλjtx̃j(0) for all j ∈ {1, . . . , mn}. (11)

By the same argument as in the case where A is circulant, we have the following two corollaries to
Theorem 1 and Theorem 2′.

Corollary 1: Let x0 = x(0) be given. When A is a symmetric block circulant matrix with circulant
blocks, eAtx0 = x(t) can be solved uniquely for A with a value of x(t) at a single time tm.

Corollary 2: Let x0 = x(0) be given. Suppose that A is a block circulant matrix with circulant
blocks. In order to uniquely solve the inverse problem eAtx0 = x(t) for A, it is necessary and sufficient take
measurements of x(t) at two distinct times t1 and t2, such that the ratio of t2 to t1 is an irrational number.

Level-N Circulants

We can make a further extension of our circulant case, considering matrices A that are level-N circulants.
A level-1 circulant is just an ordinary circulant. A level-2 circulant is one that is in BCCB. A level-3 circulant
is a block circulant whose blocks are level-2 circulants. In general, a level-N circulant is a block circulant
whose blocks are level-(N − 1) circulants. The following matrix C is an example of the smallest level-3
circulant.

C =























a b c d e f g h
b a d c f e h g
c d a b g h e f
d c b a h g f e
e f g h a b c d
f e h g b a d c
g h e f c d a b
h g f e d c b a
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Fig. 1 Graph of the eight gene network represented by C above, the smallest level-3 circulant.

We will use C(N)m1,...,mN
to denote the class of level-N circulants consisting of an mN × mN block

circulant whose blocks are m(N−1)×m(N−1) block level-(N-1) circulants and belong to C(N −1)m1,...,m(N−1)
.

For example, the matrix C above belongs to the class of level-N circulants denoted by C(3)2,2,2.

Suppose that matrix A in equation (1) belongs to C(N)m1,...,mN
. Similar to the circulant and level-2

circulant case, A may be diagonalized by the matrix FmN
⊗ Fm(N−1)

⊗ · · · ⊗ Fm1 [1]. Hence, we have that

A = (FmN
⊗ · · · ⊗ Fm1)

∗Λ(FmN
⊗ · · · ⊗ Fm1). (12)

Defining x̃(t) = (FmN
⊗ · · · ⊗ Fm1)x(t), we see that

x̃(t) = eΛtx̃0 and hence, (13)

x̃j(t) = eλjtx̃j(0). (14)

Hence we have the following generalizations for Theroem 1 and Theorem 2′.

Theorem 1′: Let x0 = x(0) and a positive integer N be given. When A is a symmetric level-N circulant
matrix, eAtx0 = x(t) can be solved uniquely for A with a value of x(t) at a single time tm.

Theorem 2′′: Let x0 = x(0) and a positive integer N be given. Suppose that A is a level-N circulant
matrix. In order to uniquely solve the inverse problem eAtx0 = x(t) for A, it is necessary and sufficient take
measurements of x(t) at two distinct times t1 and t2, such that the ratio of t2 to t1 is an irrational number.

When reverse engineering a gene network with n genes, it will prove useful to consider the various level-N
circulants which have the order n. Suppose that we have a gene network with 100 genes. Then, we can
solve our inverse problem for level-3 circulants belonging to various classes, including, C(3)2,2,25,C(3)2,25,2,
C(3)5,5,4, and C(3)2,5,10. We could also solve our problem for a level-4 circulant of the class C(4)5,5,2,2. Also,
suppose that n has a prime factorization given by n = p1

a1p2
a2 · · · pl

al . We see that the largest number of
levels our level-N circulant could have would be N = a1 + a2 + . . . + al. In the case where n = 100, 4 is the
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largest possible value for N .

Toeplitz Matrices

Toeplitz matrices are those m × n matrices T of the form

T =















a0 a1 a2 · · · an

a−1 a0 a1 · · · a(n−1)

a−2 a−1 a0 · · · a(n−2)

...
...

...
. . .

...
a−m a−(m−1) a−(m−2) · · · a0















.

Before preceding to the general Toeplitz case, we will first consider the solution to equation (2) when A
is an n×n upper triangular Toeplitz matrix. Define A = utoeplitz(a1, a2, . . . , an) to be the upper triangular
Toeplitz matrix given by

A =









a1 a2 · · · an

0 a1 · · · an−1

...
. . .

. . .
...

0 · · · 0 a1









.

We assert that eAt is also an upper triangular Toeplitz matrix. Consider the expansion eAt = I +
At + 1

2!A
2t2 + 1

3!A
3t3 + . . .. Given two upper triangular Toeplitz matrices, B = utoeplitz(b1, . . . , bn)

and G = utoeplitz(g1, . . . , gn), their product BG is the upper triangular Toeplitz and given by BG =
utoeplitz(b1g1, b1g2 + b2g1, . . . , bng1 + bn−1g2 + . . . + b1gn). Hence Aj is upper triangular Toeplitz for all
positive integers j. The sum of upper triangular Toeplitz matrices is again upper triangular Toeplitz. This
implies eAt is an upper triangular Toeplitz matrix. Let a discrete time tm > 0 be given. Then, let T = eAtm

be the upper triangular Toeplitz matrix T = utoeplitz(u1, u2, . . . , un). Assuming we know x(t) at t = 0 and
t = tm, we wish to solve the inverse problem eAtmx(0) = x(tm) for A. We can easily solve the equation
Tx(0) = x(tm) for T = eAtm . Using T we will be able to calculate eAt at any time tm. We have

Tx(0) =









u1 u2 · · · un

0 u1 · · · un−1

...
. . .

. . .
...

0 · · · 0 u1

















x1(0)
x2(0)

...
xn(0)









=









x1(tm)
x2(tm)

...
xn(tm)









, and hence













u1x1(0) + u2x2(0) + . . . + unxn(0)
u1x2(0) + u2x3(0) + . . . + un−1xn(0)

...
u1xn−1(0) + u2xn(tm)

u1xn(0)













=













x1(tm)
x2(tm)

...
xn−1(tm)
xn(tm)













. (15)

It is easily seen that u1 = xn(tm)
xn(0) . Thus, we can solve for u1 whenever xn(0) 6= 0. Suppose xn(0) is

nonzero. Once we obtain u1, we are able to calculate u2 = xn−1(tm)−u1xn−1(0)
xn(0) . In general,

u1 =
xn(tm)

xn(0)
and

uj =
xn−j+1(0)

xn(0)
− 1

xn(0)

j−1
∑

k=1

ukxn−j+1 (16)
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whenever xn(0) 6= 0. Thus, we can obtain the full matrix T = eAtm .

We would like to show that there exists a unique A such that eAtm = T and provide a method for de-
termining A. Suppose that eAtm = T where A = utoeplitz(a1, a2, . . . , an) and T = utoeplitz(u1, u2, . . . , un).
Let V = Atm = utoeplitz(v1, v2, . . . , vn). We would like to solve the problem eV = T for V . We have that
I + V + 1

2!V
2 + 1

3!V
3 + . . . = T . Consider the element u1 of T . We see that 1 + v1 + 1

2!v
2
1 + 1

3!v
3
1 + . . . = u1,

so u1 = ev1 . Since u1 = xn(tm)
xn(0) is real, we may solve for v1 uniquely. We will need the following lemma.

Lemma 1: Let V be the n × n upper triangular Toeplitz matrix given by V = utoepliz(v1, v2, . . . , vn).
Define Vk to be the submatrix of V given by Vk = utoeplitz(v1, v2, . . . , vk), where k ≤ n. Then, [eVk ]i,j =
[eV ]i,j for i, j ∈ {1, . . . , k}.

Proof: We have that

V =





















v1 · · · vk vk+1 · · · vn

0
. . .

...
...

. . .
...

...
. . . v1 v2 · · · vk+1

0 · · · 0 v1 · · · vn−k

...
. . .

...
. . .

. . .
...

0 · · · 0 · · · 0 v1





















=

(

Vk W
0 Vn−k

)

, where W =







vk+1 · · · vn

...
. . .

...
v2 · · · vk+1






.

For j ∈ �+,

V j =

(

V j
k Ψ(Vk, Vn−k, W )

0 V j
n−k

)

,

where Ψ is some function of Vk, V n − k, and W . Thus, we see that

eV = I + V +
1

2!
V 2 + . . . =

(

eVk Ω(Vk, Vn−k, W )
0 eVn−k

)

,

where Ω is some function of Vk, V n − k, and W . Thus, for 1 ≤ k ≤ n, [eV ]i,j = [eVk ]i,j for i, j ∈ {1, . . . , k}.

We now return to our question of determining v1, v2, . . . , vn in matrix V . Consider eV = T . From Lemma
1 we see that eVk = (eV )k, for 1 ≤ k ≤ n. In other words, eVk = Tk = utoeplitz(u1, . . . , uk). We would like
to show that uk = f(v1, . . . , vk−1) + vkev1 , where f is some function of v1, . . . , vk−1.

Tk = eVk = I +





v1 · · · vk

. . .
...

0 v1



 +
1

2!





v1 · · · vk

. . .
...

0 v1





2

+
1

3!





v1 · · · vk

. . .
...

0 v1





3

+ . . .

Let us consider only the value of uk = [Tk]1,k.

uk = vk +
1

2!
(2v1vk + f1(v1, . . . , vk−1)) +

1

3!
(3v1

2vk + f2(v1, . . . , vk−1)) +
1

4!
(4v1

3vk + f3(v1, . . . , vk−1)) + . . .

= vk(1 + v1 +
1

2!
v2
1 +

1

3!
v3
1 + . . .) + f(v1, . . . , vk−1)

= f(v1, . . . , vk−1) + vkev1 . (17)
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