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Abstract

The Effect of Synaptic Plasticity on Spatial

Representation and Navigation

by

Kathryn Ruth Ward

Synaptic plasticity, or the change in weight of the connections between cells, is a key

mechanism underlying the brain’s spatial representation and navigation functions.

Experimentalists have shown that grid cells in the medial entorhinal cortex fire in

hexagonal patterns within an environment, or set of visual cues. Grid cells provide

the input for place cells, which fire primarily at one location in the environment

and are found in the hippocampus, a region essential for both learning and memory.

I have built a computational model to examine how synaptic plasticity affects the

interactions among grid cells and place cells. This work demonstrates that a rate-

based plasticity model drives the weights from grid cells to place cells to such a

distribution that place cells form single firing fields. Furthermore, a spike-timing-

dependent plasticity model applied to the connections among place cells causes place

fields to shift backward as observed experimentally.
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Chapter 1

Introduction

Synaptic plasticity, or the process in which the strength of the connection between

neurons changes in time, enables the brain to both learn and store memories. Every-

day functions, such as remembering the events of the day or learning to navigate from

work to home, depend on this process. Because it plays such a key role in many func-

tions, a realiable computational model of synaptic plasticity would enable researchers

to gain better insight into the mechanisms underlying these functions. In this work I

have built a computational model of synaptic plasticity and have examined its effect

on the brain’s spatial representation and navigation functions.

The brain provides spatial information through the activity of grid cells and place

cells, which have strong spatial tuning. In 2005 Moser and his lab discovered that grid

cells primarily spike, or send current to other cells, in hexagonal patterns within an

environment (Hafting et al. [12]). O’Keefe and Nadel discovered place cells in 1978.

1
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Place cells, whose primary source of input is the network of grid cells, primarily

spike at one location within an environment (O’Keefe and Nadel [22]). In the spatial

representation setting, an environment refers to the set of visual cues that surround

a given organism. Figure 1.1 shows the firing fields of both grid cells and place cells.

To ensure that my computational model can predict biological results, I have

simulated a spatial representation experiment currently being performed by James

Knierim and his lab at the University of Texas Medical School. In this experiment

a rat runs around a circular track while electrodes lowered into its brain record the

spiking behavior of the cells (Lee et al. [19]). I have worked closely with Knierim to

ensure that my model is consistent with the biology of the system. In turn, the com-

putational model I have developed provides insight into the mechanisms underlying

observed results from experiments such as his.

This work focuses on two phenomena that occur as the rat circles the track. First,

each place cell integrates input from grid cells, which spike at several locations along

the track, to form a place field at one location. Second, many place fields shift

backward, in the opposite direction that the rat is moving. This thesis demonstrates

that rate-based synaptic plasticity applied to the connections from grid cells to place

cells can enable place fields to form. Furthermore, spike-timing-dependent plasticity

(STDP) applied to the connections among place cells can cause place fields to shift

backward.
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(a) (b)

Figure 1.1: Firing fields of grid cells and place cells. The experimental data presented here
shows the firing fields of a grid cell (a) and a place cell (b) as a rat explores a rectangular
enclosure. The gray lines show the trajectory of the rat. (a) Each red dot represents a
location at which the grid cell has spiked. The firing locations of grid cells form hexagonal
patterns. (b) Each red dot represents a location at which the place cell has spiked. Place
cells spike at one location within a given environment. Taken from Witter and Moser [29].

1.1 Spatial Representation

After moving to a new city, one must consult a map to navigate from one place

to another. In time, however, the brain builds an internal map, enabling one to

navigate without external aid. Grid cells and place cells belong to the network that

performs this function. In this section I describe the network’s anatomy, focusing on

the characteristics that lend it to spatial representation. I then describe the double

rotation experiment the model simulates. This experiment provides further insight

into the interactions among the cells in the network.

1.1.1 Neuronal Network for Spatial Representation

Place cells are located in the hippocampus, an essential region for learning and mem-

ory (O’Keefe and Nadel [22]). Without the hippocampus, the brain would be unable

to store memories for longer than a few minutes. One famous example of this memory
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loss is a man known as H.M. In 1953, H.M. sustained damage to his hippocampus

during brain surgery. From that day on, he was unable to retain new memories from

day to day, though he could clearly recall events from his childhood (Cohen and

Eichenbaum [7]). Patients such as H.M. have shown that one vital function of the

hippocampus is to act as a relay between short-term and long-term memory.

The hippocampus is also an important region for the generation of neurological

diseases such as Alzheimer’s disease and epilepsy. The early and extensive changes

characteristic of Alzheimer’s disease occur in the hippocampus. During an epileptic

seizure, cells spike synchronously at a much higher rate than normally, and this

synchronous over-activity among cells often originates in the hippocampus (Traub et

al. [28]).

Figure 1.1.1 shows a portion of the rat brain. The regions important for spatial

representation are the entorhinal cortex (EC) and the hippocampal formation (HF).

The EC contains two subregions, the lateral entorhinal cortex (LEC) and the medial

entorhinal cortex (MEC). Cells in the LEC have weak spatial tuning, showing little

preference for one location in an environment over another. The MEC, however,

contains grid cells, which have strong spatial tuning. The hippocampus is composed

of the dentate gyrus (DG), CA1, and CA3 regions. Place cells are contained in the

CA1 and CA3 regions of the hippocampus.

The regions form several connections onto each other, as shown in Figure 1.1.1.

Two pathways exist from the EC to the CA3, one direct pathway and one pathway
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that passes through the DG (Traub et al. [28]). The direct pathway provides the

majority of input to the CA3 because cells in the DG have a low spike rate (Knierim,

personal communication, March 3, 2009). The CA3 then projects onto itself and onto

the CA1, which also receives input from the EC. The CA1 projects back onto the

EC, providing the output of the hippocampus (Traub et al. [28]).

The CA3 subregion of the hippocampus is particularly important because of its

recurrent collateral connections. These connections are strong enough that a burst of

spikes from a single CA3 cell can evoke a burst of spikes in another CA3 cell (Traub

et al. [28]). These strong connections cause the CA3 to have a low threshold for the

generation of an epileptic seizure. The recurrent collateral connections also affect

place cells in the CA3, as demonstrated in the double rotation experiment (Lee et

al. [19]).

I model the behavior of place cells in the CA3 region of the hippocampus during

the double rotation experiment, examing their interactions with other cells and their

dependence on synaptic plasticity. Because of the importance of synaptic plasticity

among cells in the CA3 region, the understanding gained from the model has implica-

tions for many important areas in addition to spatial representation and navigation.

1.1.2 The Double Rotation Experiment

Certain aspects of the network described in the previous section are not yet fully

understood. To further investigate the interactions among cells in the network, the
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(a) (b)

Figure 1.2: Schematic of the hippocampus and entorhinal cortex. (a) This schematic
shows the posterolateral view of the left hemisphere of a rat brain. Grid cells are contained
in the medial entorhinal cortex (MEC). Both regions of the entorhinal cortex, the MEC
and the lateral entorhinal cortex (LEC), drive cells in the hippocampal formation (HF). (b)
This schematic shows a horizontal section of the rat brain. Place cells are contained in the
CA1 and CA3 subregions of the hippocampus. Taken from Witter and Moser [29].

Figure 1.3: Connections among the network regions in the network. The entorhinal cortex,
which is divided into the MEC and LEC subregions, connects onto the dentate gyrus (DG),
CA1, and CA3 subregions of the hippocampus. The DG connects onto itself and onto the
CA3, and the CA3 connects onto itself and the CA1. The CA1 connects back onto the
entorhinal cortex, providing the output of the network. The other regions shown are the
presubiculum (PrS), parasubiculum (PaS), and subiculum (S). These regions do not affect
the firing fields of place cells in the hippocampus. Taken from Amaral and Witter [1].
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Knierim lab has performed the double rotation experiment in which a rat runs clock-

wise around a circular track with various local and distal cues. The radius of the

track is 33 cm, and the rat takes an average of 18 seconds to complete one lap. Thus

the rat’s average velocity as it circles the track is 11.5 cm/sec.

The experiment is dividied into two stages, the learning stage and the mismatch

stage. During the learning stage, the Knierim lab records the spiking behavior of grid

cells and place cells as the rat initially circles the track. After the rat has learned the

cues over a period of days, the lab performs the mismatch stage, in which they rotate

the distal cues clockwise and the local cues counter-clockwise. They then record the

response of grid cells and place cells to this change of environment.

The computational model of this work simulates two phenomena that occur during

the learning stage of the experiment. First, place cells form single firing fields as

the rat initially explores the track. Second, once the place fields have formed, they

shift backward, in the counterclockwise direction (Yu et al. [31]). Synaptic plasticity

accounts for both phenomena in the model.

As Blum and Abbott have proposed, the backward shift of place fields may have

important implications for sequence learning and navigation. Place fields shift back-

ward in situations where a rat repeatedly follows a particular route, such as a circular

track. Because of their spatial tuning, each place cell in the CA3 primarily spikes at

one location along the route. When the firing fields shift backward, the place cells

spike earlier along the route, enabling the rat to anticipate its next step (Blum and
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Abbot [5]).

The double rotation experiment is one of the few experiments that examine the

difference between place cells in the CA1 and in the CA3. During the learning stage,

most place cells in the CA3 shift backward, while place cells in the CA1 do not. The

differences are even more apparent in the mismatch stage of the experiment. Grid

cells in the MEC provide the majority of spatial information to the hippocampus,

and most place cells in the CA1 adjust their firing fields when the cues are rotated

according to the response of grid cells. Place cells in the CA3, however, do not respond

according the grid cell response, implying that some unknown source or mechanism

controls place cells in the CA3 when the environment changes. I describe the results

from this stage more fully in Section 4.1.1.

1.2 Synaptic Plasticity

Synaptic plasticity is necessary for any function concerning learning and memory,

including spatial representation and navigation. Experiments such as the Morris

water maze have shown that rats lose the ability to navigate a given route when

synaptic plasticity is prevented from occurring (Morris [21]). With respect to the

double rotation experiment, Ekstrom has shown that the backward shift of place

fields only occurs if synaptic plasticity is present (Ekstrom et al. [8]).

Synaptic plasticity has impacted the study of neuroscience since Donald Hebb

first proposed his plasticity theory in 1949. This theory, known as Hebbian learning,
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asserts that if two neurons repeatedly spike at the same time, the weight between

them increases (Hebb [14]). Although the basic Hebbian learning model fails to

explain many biological phenomena, it has become the cornerstone for the numerous

models of synaptic plasticity that now exist. In this work I demonstrate that two types

of Hebbian plasticity, rate-based plasticity and spike-timing-dependent plasticity, can

account for the formation and backward shift of place fields.

1.2.1 Postsynaptic-Gated Rate-Based Plasticity

The first phenomenon the model simulates is that place cells driven by input from

grid cells form single firing fields. Researchers such as Solstad and Moser in 2006 and

Franzius in 2007 have shown that there exists a set of weights specifying the strength

of connections between neurons such that the current from grid cells in the MEC

causes place cells to form single firing fields (Solstad and Moser[26] and Franzius [9]).

In both cases, however, the weights were calculated beforehand, and plasticity was

not implemented.

Francesco Savelli, a member of the Knierim lab, has shown that, given small initial

weights, synaptic plasticity can drive the weights to a stable distribution in which grid

cells beget place cells (Savelli and Knierim [24]). However, he models place cells in

the CA1 region of the hippocampus, a region that contains no collateral connections

among its cells. As a result, the backward shift in the place cells’ firing fields cannot

be observed. I have implemented the rate-based plasticity model examined by Savelli
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and confirmed that this type of plasticity can enable place fields to form in the CA3.

The rate-based plasticity model is based on experimental data, such as that shown

in Figure 1.2.1. The connection between two cells is called a synapse, where spikes

from the presynaptic cell affect the postsynaptic cell. In this experiment Heynen

et al. stimulated cells in the hippocampus to spike at a given rate and measured

the average response of postsynaptic cells due to each presynaptic spike. When they

stimulated the presynaptic cells to spike at a rate of 10 Hz, the postsynaptic responses

due to individual spikes decreased. In other words the weights from presynaptic cells

to postsynaptic cells decreased, a process known as long-term depression (LTD).

When they stimulated the presynaptic cells to spike at a rate of 100 Hz, the weights

increased, a process known as long-term potentiation (LTP).

In their book Spiking Neuron Models, Gerstner and Kistler describe the basic

rate-based plasticity model, which has the form

∆Wij(t) = k(Rj(t)− R̄)Ri(t), (1.2.1)

where Wij is the weight from presynaptic cell j to postsynaptic cell i, Rj and Ri are

the instantaneous spike rates of the presynaptic and postsynaptic cells, respectively,

R̄ is the threshold rate, and k is a parameter that specifies the learning rate. For this

model, the weight only changes if the postsynaptic cell has a nonzero spike rate, and

the presynaptic spike rate determines the direction of weight change (Gerstner and

Kistler [11], pp. 356-362). In Section 2.3.1, I provide a detailed explanation of the

implementation of this plasticity model.
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(a) (b)

Figure 1.4: Experimental results supporting rate-based plasticity. (a) Cells in the hip-
pocampus are stimulated to spike at a given rate. (b) When presynaptic cells spike at a
rate of 10 Hz, the weights decrease. When the presynaptic cells spike at a rate of 100 Hz,
the weights increase, recovering to a greater value than the baseline weight. Taken from
Heynen et al. [15].

1.2.2 Spike-Timing-Dependent Synaptic Platicity

As the rat circles the track in the double rotation experiment, the firing fields of

place cells in the CA3 shift backward due to synaptic plasticity at work among the

region’s recurrent collateral connections. The backward shift implies that synaptic

plasticity has driven the recurrent CA3 connections to a feedforward state in which

a place cell that spikes at one location is not only driven by grid cells, but is also

driven by place cells that spike just before it on the track. To simulate this effect, I

have implemented a spike-timing-dependent plasticity (STDP) model because of its

effectiveness in driving a network to a feedforward state.

True to its name, STDP models depend on the exact timing of individual pairs of

pre- and postsynaptic spikes rather than spike rates. Researchers such as Markrum

in 1997 and Bi and Poo in 1998 have shown that this type of plasticity is present in

certain biological settings (Markrum et al. spikes before the presynaptic cell, LTD
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occurs. The magnitude of LTP or LTD is determined by the exact time difference

between the two spikes.

A variety of STDP models have been developed that differ both in their assump-

tions and resulting weight distributions. One important distinction among STDP

models is the way in which each spike pair contributes to the weight change. Song

and Abbott developed an STDP model in 2000 in which each spike pair contributes

equally to the weight change (Song and Abbott [27]). In 2002 Froemke and Dan

claimed that this model fails in high-spiking regimes, which occur naturally in the

brain. They developed a model in which the first spike pair within a burst of spikes

dominates over other pairs in determining the weight change (Froemke and Dan [10]).

Figure 1.2.2 shows that the Froemke and Dan model is more accurate than the Song

and Abbott model in bursting regimes. I implement the Froemke and Dan model of

STDP for this work.

The Knierim lab has shown that both the STDP model developed by Song and

Abbott and a biophysical synaptic plasticity model developed by Shouval cause a

backward shift in a simplified setting. They simulated a network of 1000 input place

cells each connected to a single output place cell. They modelled each input place

cell to have an identical Gaussian place field, and they distributed the firing fields

evenly around the track. They then showed that the firing field of the output place

cell shifted backward due to synaptic plasticity applied to the weights from the input

place cells (Yu et al. [31] and Yu et al. [32]).
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(a)

(b) (c)

Figure 1.5: Experimental results supporting STDP. (a) The circles and triangles represent
the percentage weight change due to an individual spike pair. The x-axis represents ∆t,
the difference between the postsynaptic spike time and the presynaptic spike time, and the
y-axis represents the percentage of weight change. Taken from Bi and Poo [4]. Plots (b)
and (c) compare the accuracy of the Song and Abbot model to the Froemke and Dan model
in predicting the weight change induced by natural spike-train segments. (b) For each spike
pair, the predicted percentage weight change from the Song and Abbot STDP model is
plotted against the measured percentage weight change from experimental data. Ideally,
all circles would lie on the diagonal. (c) For each spike pair, the predicted weight change
fromthe Froemke and Dan model is plotted against the measured percentage weight change
from experimental data. Taken from Froemke and Dan [10].
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I have built on the ideas used by Shouval and Knierim to show a similar backward

shift in a more biologically realistic setting. In my model, each place cell receives

input from both excitatory and inhibitory cells in the CA3 as well as from grid cells

in the MEC. The place cells form firing fields due to rate-based plasticity applied to

the connections from a random group of grid cells. The resulting place fields vary

in strength and are not evenly distributed around the track, making it more difficult

to demonstrate the backward shift. I then show that the STDP model developed

by Froemke and Dan applied to the random connections among CA3 cells causes a

backward shift in the place fields. I provide a detailed description of the network I

have simulated in Section 2.1.



Chapter 2

Methods

Due to the complexity of the brain, numerous simplifications and assumptions must

be made to build a computational model of any brain function. The brain’s spatial

representation function is no exception. The network that performs this function

spans several regions, and the spiking behavior of cells within each region is not yet

fully understood. Due to these unknown factors and the computational cost that

accompanies incorporating each region, I have approximated the architecture of the

network in the brain with the simplified architecture described in Section 2.1.

After setting the network architecture for the model, I simulate the dynamics of

the system on two levels. First, I simulate the single-cell dynamics of each individual

cell in the network. The single-cell dynamics are fairly well understood, but mod-

elling these dynamics can be very computationally expensive. Second, I simulate the

network dynamics by implementing two types of synaptic plasticity, each based on a

15
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CA3 Inh.

W  (t)2W  (t)1

CA3 Exc.Position

W 3W 4

MEC

Figure 2.1: Architecture of the model. The model includes the MEC and the hippocampal
CA3 regions of the brain. Grid cells in the MEC generate spike trains based on the rat’s
position on the track. These spike trains drive excitatory CA3 cells, which in turn drive both
inhibitory and other excitatory CA3 cells. Inhibitory CA3 cells provide feedback inhibition
to excitatory CA3 cells. The connections among cells in each region are defined by the
weight matrices, W i, 1 ≤ i ≤ 4. A rate-based plasticity model controls controls W 1(t), and
an STDP model controls W 2(t).

different induction protocol, that drive the network to a state in which the network

dynamics of the model follow the network dynamics observed experimentally.

2.1 Architecture of the Model

Figure 2.1 shows the architecture of the model. The first level of input is the location

of the rat on the track. This information determines the firing rate of grid cells in

the MEC. As discussed in the introduction, grid cells are spatially selective, primarily

spiking in hexagonal patterns within an environment. Thus a grid cell has a higher

probability of spiking when the rat is near one of its grid points. I provide a detailed

explanation of the grid cell model in Section 2.2.1.

When a grid cell spikes, it sends current to excitatory cells in the hippocampal

CA3 region. These excitatory cells are the potential place cells of the system. A cell is

characterized as being excitatory or inhibitory based on its effect on other cells. When
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an excitatory cell spikes, it tends to depolarize the cell, or increase its voltage. When

an inhibitory cell spikes, it tends to hyperpolarize the cell, or decrease its voltage.

Place cells are found in both the CA1 and CA3 regions of the hippocampus, but

this work focuses on place cells in the CA3 because of this region’s importance and

the interesting behavior of its place cells. The connections from the MEC to the

CA3 are the important connections for the formation of place fields. The recurrent

collateral connections among excitatory CA3 cells are the important connections for

the backward shift of place fields.

I have incorporated feedback inhibition into the model for two reasons. First,

feedback inhibition is biologically present in the CA3. Second, it provides a mecha-

nism for spreading out the firing fields of place cells. When a place field forms at one

location, it drives inhibitory cells to spike at that same location. The inhibitory cells

then inhibit other place cells, lowering the probability that they will form place fields

at the same location.

The architecture of the model is an approximation of the true anatomy of the

system. As discussed in Section ??, two pathways from the MEC to the CA3 exist,

one that passes through the DG and one that directly connects the MEC to the

CA3. In this work I implement only the direct pathway because cells in the DG

spike sparsely. A second anatomical pathway not incorporated in the model is the

connection from the LEC to the CA3. Because cells in the LEC have very weak

spatial tuning, the LEC provides little information about the rat’s location on the
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track (Hargreaves et al. [13]). This model can easily be extended to incorporate other

anatomical regions.

I construct four weight matrices to define the interactions among cells. Each

nonzero element in the initial weight matrix corresponds to a synapse, or connec-

tion, between two cells. I choose the synapses randomly according to the density of

connections. Rate-based plasticity affects W 1, which stores the weights from MEC

cells to excitatory CA3 cells, and STDP affects W 2, which stores the weights among

excitatory CA3 cells. I provide a detailed description of each plasticity model in

Section 2.3.

I set the constant weight for each synapse in W 3 and W 4, which specify the weights

between excitatory and inhibitory CA3 cells, randomly between zero and the upper

weight bound. I set the initial weights for all synapses in W 1 and W 2 to the same

value, which is small enough that CA3 cells initially have a low spike rate.

2.2 Single-Cell Dynamics

Before determining network dynamics, the model must first determine the dynamics

of each individual cell within the network. I use two different methods to model the

dynamics of individual cells, one for modelling grid cells in the MEC and one for

modelling cells in the CA3. This is due to the architecture of the model. Because

grid cells provide the first level of input, I simulate their firing patterns based on
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experimental data. The situation is different, however, for cells in the CA3, which

integrate input from other cells. I use the integrate and fire model to simulate the

dynamics of individual CA3 cells.

2.2.1 Grid Cell Model

As Hafting suggested, I define a grid cell by three parameters, the tilt θ, where

0 ≤ θ < π/3;

the base b, where

0 < b < ∞;

and the offset δ = (r, φ), where

0 ≤ r < b and 0 ≤ φ < 2π.

The tilt specifies the angle from the Cartesian x-axis to the grid axis, the base specifies

the distance from one grid point to another along a grid lateral, and the offset specifies

both the magnitude, r, and direction, φ, of the difference between the grid center and

the origin (Hafting et al. [12]). The grid center is given by

c = (r cos(φ), r sin(φ)). (2.2.1)

The set of grid points, G(θ, b, δ), form hexagonal patterns. This set is the union

of two sets, G1(θ, b, δ) and G2(θ, b, δ), that are staggered with respect to each other.

The set is defined by
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G(θ, b, δ) = G1(θ, b, δ)
⋃

G2(θ, b, δ), (2.2.2)

where

G1(θ, b, δ) = {c + kb(cos θ, sin θ) + 2jh(− sin θ, cos θ) : j, k ∈ Z} , (2.2.3)

G2(θ, b, δ) = {c + (k + (1/2))b(cos θ, sin θ) + (2j − 1)h(− sin θ, cos θ) : j, k ∈ Z} ,

(2.2.4)

where h is the grid height, given by

h = b tan(π/3)/2. (2.2.5)

Figure 2.2 shows an example of G, where the elements of G1 are marked with

black circles, and the elements of G2 are marked with red diamonds. The grid’s tilt,

base, offset, and center are also demonstrated.

It is important to vary the grid cell parameters so that place cells receive enough

variety in their grid cell input. I generate the parameters for each grid cell randomly

within the appropriate ranges given in Table 2.2.1. I vary the tilt θ between 0 and

π/3 because a tilt of 0 radians is equivalent to a tilt of π/3 radians. Biologically, the

base of grid cells lies between 28 and 73 cm (Solstad et al. [26]). However, I confine

the base of the grid cells in the model to lie between 28 and 50 cm because the radius

of the track is only 33 cm wide. I have chosen the bounds for the offset, δ, so that

the center of the grid always lies within the track.
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δ

b

θ

Figure 2.2: Graphical demonstration of grid cell parameters. This plot shows an example
of a grid, G(θ, b, δ), where θ = π/4 rad, b = 1.146, and δ = (0.496, θ). The black circles and
red diamonds represent the elements of G1 and G2, respectively. The large circle specifies
the grid center.

Table 2.1: Grid Cell Parameters

Parameter Value Description

θ 0-pi/3 tilt

b 28-50 cm base

r 0-33 cm offset magnitude

φ 0-2π offset direction

γ 0.018 spread of grid

tref 3 ms refractory period

fmax 20 Hz maximum spike rate
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The firing rate of a grid cell depends on the rat’s distance to the nearest grid

point. This distance is defined by the metric

d(x, G) = min{|x− y| : y ∈ G}, (2.2.6)

where x denotes the position of the rat.

Each grid cell generates a spike train that depends on d(x, G). A spike train is

represented by a vector containing the times at which the cell spikes. This vector is

set by computing the interspike interval (ISI) between each pair of spikes. Rodieck

has shown that the ISIs from experimental data follow an exponential distribution,

where the probability is high for a short ISI and decays exponentially as the interval

grows (Rodieck [23]). Because the interval between events in a Poisson process also

follows the exponential distribution, I model each grid cell’s spike train to be a non-

homogeneous Poisson process, where the firing rate depends on the rat’s distance to

the grid.

I follow the algorithm outlined below to generate a thinned, nonhomogeneous

Poisson spike train for each grid cell. This approach was taken by Savelli in his grid

cell model (Savelli and Knierim [24]). The algorithm incorporates the cell’s refractory

period, tref, which represents the interval of time after a cell spikes in which it cannot

generate another spike. Biologically, the refractory period is due to the depletion of

resources that a cell needs to generate a spike. The algorithm also incorporates the

maximum firing rate of the cell, fmax. If the rat were to remain fixed on one of the

cell’s grid points, the cell’s average firing rate would be fmax.
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Algorithm: Generate a thinned, nonhomogeneous Poisson spike train

1. Initialize t0 = 0.

2. Propose an ISI from an exponential distribution with mean 1/fmax, given by

∆t = max(exprnd(1/fmax), tref), (2.2.7)

where fmax is the maximum spike rate, and tref is the cell’s refractory period.

3. At t = t0 + ∆t, accept a spike with probability

P = exp

(
−d2(x, G)

γb2

)
, (2.2.8)

where x denotes the position of the rat, and γ determines the spread of the

grid.

4. Set t0 → t0 + ∆t; return to step 2.

Figure 2.3 demonstrates the effect of γ on the spread of the firing fields of a grid cell

as a rat explores a rectangular enclosure.

2.2.2 CA3 Cell Model: Integrate and Fire

Simulating the dynamics of cells in the CA3 requires a much different method than

that used for grid cells in the MEC. Unlike the grid cells of the model, which provide
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Figure 2.3: Comparison of the effect of γ values on the firing fields of the cell. As γ
increases, the width of the Gaussian increases, causing the spread of the firing fields to
increase. For all plots, θ = π

4 radians, b = 15 cm, and δ = (2 cm, θ rad). The rat runs the
same trajectory for all values of γ.
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Figure 2.4: Circuit diagram of an integrate-and-fire neuron. The cell membrane acts as
a leaky capacitor permeable to a leak current, capacitive current, excitatory current, and
inhibitory current. Each channel is characterized by the conductance and reversal potential.
The synaptic conductances, gE and gI , are gated by neurotransmitter from a presynaptic
cell.
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the first level of neuronal input, CA3 cells integrate neuronal input from both grid

cells and other CA3 cells. Thus to simulate the dynamics of an individual CA3 cell,

I must determine the cell’s response to spikes from other cells within the network.

Several methods have been developed to model single-cell dynamics, and there is

a give and take between accuracy and computational cost for each method. In 1952,

Hodgkin and Huxley developed an impressive phenomenological model for single-

cell dynamics (Hodgkin and Huxley [16]). While this model is accurate, it is too

computationally expensive to be useful for my network containing over a thousand

cells. Kellems is currently working to accurately model spike times for individual cells

using model reduction techniques (Kellems et al. [18]). In the future I will use his

model for the CA3 cells because of its accuracy at little computational cost.

Currently, I am using the integrate and fire (IAF) model for single-sell dynamics.

The voltage of a cell generally has slight changes until it reaches some threshold value,

at which point the voltage drastically increases and decreases, and the cell is said to

have spiked, or fired. IAF approximates the voltage of the cell in the subthreshold

regime, when the voltage is less than the threshold voltage, and approximates the

times at which the cell spikes.

The dynamics of the integrate-and-fire cell are governed by three coupled ODEs

describing the cell’s voltage, excitatory conductance, and inhibitory conductance.

Figure 2.2.2 shows the circuit representation of the cell. Kirchoff’s Current Law
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applied to this circuit determines the change in voltage of cell i, given by

cm
dVi

dt
(t) = gL(VL − Vi(t)) + gE

i (t)(VE − Vi(t)) + gI
i (t)(VI − Vi(t)) (2.2.9)

for Vi(t) ≤ Vth.

The cell membrane acts as a leaky capacitor permeable to the flow of chloride

ions, resulting in a constant membrane conductance per unit area, gL, and membrane

capacitance per unit area, cm. In the absense of driving current, the cell’s voltage

decays to its resting voltage, VL, at a rate given by τm = cm/gL.

In addition to the leak conductance, the cell also has transient synaptic conduc-

tances caused by spikes from other cells that form synapses, or connections, onto the

cell. When a presynaptic cell spikes, it releases chemicals known as neurotransmitter

that briefly bind to receptors on the postsynaptic cell, inducing a transient synap-

tic conductance biased by an associated reversal potential. The excitatory reversal

potential, VE, is much larger than the threshold voltage of a cell, and the inhibitory

reversal potential, VI , is close to the resting voltage of a cell.

Excitatory and inhibitory conductances are driven by spikes from excitatory and

inhibitory cells, respectively. In the model an excitatory CA3 cell receives excitatory

input from grid cells in the MEC and from other excitatory CA3 cells, and it re-

ceives inhibitory input from inhibitory CA3 cells. Thus the excitatory and inhibitory

conductances for excitatory cell i are governed by

τE
dgE

i

dt
(t) = −gE

i +
NMEC∑
j=1

W 1
ij(t)S

1
j (t) +

NCA3(E)∑
j=1

W 2
ij(t)S

2
j (t) (2.2.10)
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and

τI
dgI

i

dt
(t) = −gI

i +
NCA3(I)∑

j=1

W 3
ijS

3
j (t), (2.2.11)

where NMEC denotes the number of MEC cells, NCA3(E) denotes the number of excita-

tory CA3 cells, and NCA3(I) denotes the number of inhibitory CA3 cells.

Sj(t) denotes the spike train for cell j, given by

Sj(t) =

]Tj∑
k=1

δ(t−Tj(k)), (2.2.12)

where Tj(k) is a vector containing the times at which cell j spikes, ]Tj is the number

of spikes contained in Tj, and δ denotes the Dirac-delta function, which is only

nonzero when t = Tj(k).

The conductances for inhibitory CA3 cell i are very similar, governed by

τE
dgE

i

dt
(t) = −gE

i (t) +
NCA3(E)∑

j=1

W 4
ijS

4
j (t) (2.2.13)

and

gI
i = 0. (2.2.14)

Figure 2.1 demonstrates the connections used in the above equations.

These equations describe the dynamics of each cell in the subthreshold regime.

When the voltage reaches its threshold value, the cell generates a spike, and the

current time is added to the vector Tj. The voltage is then reset to its reset value

and held constant until the cell’s refractory period has transpired.
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Table 2.2: Integrate and Fire Parameters

Parameter Value Description

Cm 1 µF/cm2 membrane capacitance

gL 0.3 mS/cm2 leak conductance

VL -70 mV resting voltage

VI -70 mV inhibitory reversal potential

VE 0 excitatory reversal potential

Vreset -65 mV reset voltage

tref 3 ms refractory period

τE 5 ms excitatory decay constant

τI 5 ms inhibitory decay constant
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Table 2.3: Weight Matrix Parameters

Parameter Value Description

NMEC 540 number of MEC cells

NCA3(E) 1200 number of excitatory CA3 cells

NCA3(I) 96 number of inhibitory CA3 cells

W 1
max 0.2-0.3 maximum weight for W 1

δ1 0.2 density of W 1

W 2
max 0.2-0.3 maximum weight for W 2

δ2 0.25 density of W 2

W 3
max, W 4

max 0.8 maximum weight for W 3, W 4

δ1, δ2 0.2 density of W 3, W 4
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2.3 Network Dynamics: Synaptic Plasticity

The weight matrices used to approximate the single-cell dynamics change in time

due to synaptic plasticity. Both the formation and the backward shift of place fields

depend on the manner in which the weights change. I have implemented a rate-based

plasticity model to determine the dynamics of W 1, or the weights from MEC cells

to excitatory CA3 cells, and an STDP model to determine the dynamics of W 2, or

the weights among excitatory CA3 cells. Both models are phenomenological, and

the characteristics of each cause the network dynamics in the model to resemble the

network dynamics observed experimentally.

2.3.1 Implementation of Postynaptic-Gated Rate-Based Plas-

ticity

I have implemented the postsynaptic-gated rate-based plasticity model to simulate

the formation of place fields. This plasticity model determines the change in weight

of the conections from MEC grid cells to excitatory CA3 cells. The model is called

postsynaptic-gated because no change in weight occurs if the instantaneous firing

rate of the postsynaptic cell is zero. According to the plasticity model, the change in

weight at time t from presynaptic cell j to postsynaptic cell i is given by

∆W 1
ij(t) = k(Rj(t)− R̄)Ri(t), (2.3.1)
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where k is a parameter that determines the learning rate, Rj(t) is the instantaneous

rate of presynaptic cell j, Ri(t) is the instantaneous rate of postsynaptic cell i, and R̄

is a constant threshold rate. The rate of the presynaptic cell, Rj(t), determines the

direction of weight change. If Rj(t) < R̄, LTD occurs; if Rj(t) > R̄, LTP occurs.

To compute the cell’s instantaneous spike rate, I convolve the cell’s spike train

with an exponential kernel. Given a spike train Sj(t) as defined in equation 2.2.12,

the instantaneous spike rate for cell j is given by

Rj(t) = β

∫ ∞

0

exp

(
t− s

τCa

)
Sj(s)ds. (2.3.2)

The decay constant τCa corresponds to the diffusion rate of calcium. This parameter

choice is appropriate because synaptic plasticity depends on the density of calcium at

the synapse (Yang et al. [30]). I set the constant β such that if the rat were to stay

fixed on a grid point for a sufficiently long time, the mean of the instantaneous spike

rate of the cell would be fmax, the parameter used in Equation 2.2.7 to generate the

spike trains for grid cells.

2.3.2 Implementation of Spike-Timing-Dependent Plasticity

The STDP model applied to the recurrent connections within the network of exci-

tatory CA3 cells causes the backward shift in place cells’ firing fields as seen exper-

imentally. This backward shift suggests that the network is driven to a feedforward

state in which place cells that spike at one location on the track drive place cells that

spike at the next location.
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Table 2.4: Rate-Based Plasticity Parameters

Paramter Value Description

k 1-5 ms learning rate

β 10 Hz rate constant

τCa 100 ms Calcium decay rate

R̄ 5 Hz threshold rate

(a) (b)

Figure 2.5: Weight change due to STDP. (a) This standard STDP curve shows the
percentage weight change, F, due to ∆t, the difference between the presynaptic spike time
and the postsynaptic spike time. The curve is set to match experimental data as best as
possible. Taken from Song and Abbott [27]. (b) In the Froemke and Dan model the weight
change induced by each spike pair depends on the pre- and postsynaptic efficacy values in
addition to F (∆t). The efficacy value for each cell is set to 0 when the cell spikes, then
recovers exponentially to 1. Taken from Froemke and Dan [10].
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The basic STDP model proposed by Song and Abbott states that if the presynaptic

cell spikes before the postsynaptic cell, LTP occurs. If the postsynaptic cell spikes

before the presynaptic cell, LTD occurs. The percentage weight change due to the

presynaptic spike at time tpre and the postsynaptic spike at time tpost is given by

F (∆t) =


A+ exp(∆t/τ+) if ∆t < 0,

A− exp(∆t/τ−) if ∆t ≥ 0,

(2.3.3)

where ∆t = tpre − tpost (Song and Abbott [27]). The percentage weight change is

plotted in Figure 2.3.2.

To avoid situations in which the weights become arbitrarily large, I restrict the

weight of each synapse to lie within the interval [0, W 2
max]. In the Song and Abbott

STDP model, the weight change due to each pair of a pre- and postsynaptic spikes is

given by

∆W 2 = F (∆t)W 2
max. (2.3.4)

Froemke and Dan proposed a modified version of the STDP model in which the

first spike in a burst of spikes provides the largest contribution to the weight change.

In their model each spike has an efficacy value associated with it that depends on

the amount of time that has passed since the cell’s previous spike. The pre- and

postsynaptic efficacy values are given by

εpre(∆ts) = 1− exp(−∆ts/τpre), (2.3.5)

εpost(∆ts) = 1− exp(−∆ts/τpost), (2.3.6)
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where ∆ts denotes the amount of time that has passed since the cell’s previous spike,

τpre denotes the presynaptic efficacy decay rate, and τpost denotes the postsynaptic

efficacy decay rate. These efficacy values are demonstrated in Figure 2.3.2.

According to the Froemke and Dan model, the weight change due to each spike

pair is given by

∆W 2
ij = εpre(∆ts)εpost(∆ts)F (∆t)W 2

max, (2.3.7)

where F (∆t) denotes the percentage weight change from the Song and Abbot model,

given by equation 2.3.3, and W 2
max again denotes the maximum weight allowed at

each synapse (Froemke and Dan [10]). Note that if the efficacy values of the pre- and

postsynaptic spikes are set to one, the Froemke and Dan model is identical to the

Song and Abbott model.

Because a place cell spikes in bursts each time the rat crosses its firing field, it is

very important to properly sum the weight change due to each spike pair. To stay

as true to biology as possible, I have implemented the STDP model of Froemke and

Dan. This model is effective in causing a backward shift in the place fields.
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Table 2.5: STDP Parameters

Parameter Value Description

A+ 20 maximum percentage of weight increase

A− 21 maximum percentage of weight decrease

τ+ 20 ms decay constant for weight increase

τ− 20 ms decay constant for weight decrease

τpre 20 ms presynaptic efficacy decay constant

τpost 50 ms postsynaptic efficacy decay constant



Chapter 3

Results

The computational model I have built is a useful tool only if it agrees with experi-

mental data. To determine the reliability of the model, I have tested it against the

experimental data obtained during the learning stage of the double rotation experi-

ment. Two phenomena occur during this stage. First, place cells in the CA3 integrate

neuronal input from grid cells in the MEC to form single firing fields. Second, these

firing fields shift backward as the rat continues to circle the track. My computational

model predicts both phenomena, demonstrating that rate-based synaptic plasticity

can enable place cells to form single firing fields, and STDP can cause the place fields

to shift backward.

For all simulations presented in this thesis, I use 540 grid cells, 1200 excitatory

CA3 cells, and 96 inhibitory CA3 cells. As Ascoli has estimated, the CA3 contains an

estimated 200,000 cells, but it is computationally unrealistic to simulate a network of

37
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this size. To ensure that cells receive enough variety in their input, I use a density of

0.2 for W 1, which stores the weights from MEC cells to excitatory CA3 cells, and a

density of 0.25 for W 2, which stores the weights among excitatory CA3 cells. These

densities are much larger than 2 to 10 percent densities found experimentally (Ascoli

et al. [2]).

To handle the stochastic input from grid cells and the nonlinearities of the differ-

ential equations governing CA3 cells, I use the Backward Euler timestepping method

to update the dynamic variables of the system. Even given the relatively small net-

work size of the model, W 1 alone contains 129,600 dynamic variables that must be

updated at each timestep. W 2 adds another 360,000 dynamic variables, giving the

system almost 0.5 million dynamic variables. The rat takes 18 seconds to complete

one lap, and I use a timestep of 1 ms. Thus I must update almost 0.5 million variables

18,000 times to simulate a single lap around the track. In Section 4.2.1, I propose

methods to handle the enormous computational cost that accompanies solving this

dynamical system.

3.1 Formation of Place Fields

The first experimental behavior the model simulates is that place cells form single

firing fields along the track. This occurs despite the fact that place cells receive the

majority of their spatial input from grid cells, which spike at several locations forming

hexagonal patterns. This work demonstrates that the postsynaptic-gated rate-based
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plasticity model applied to W 1 enables place fields to form. Figure 3.1 shows an

example of the resulting firing fields of CA3 cells in the model. For each location on

the track, I calculate the spike rate of a cell as described in Section 2.3.1. Unless

otherwise noted, all parameter values for the results presented here are taken from

Table 2.2.2 and Table 2.3.1.

Rate-based plasticity polarizes the weights in W 1, as shown in Figure 3.1d. Be-

cause the plasticity model is postynaptically gated, the weights can potentially change

each time the postsynaptic cell, or the CA3 cell in this case, has a positive spike rate.

The presynaptic cell, or MEC cell in this case, then determines the direction of weight

change. Thus if there is a high correlation between the spike trains of MEC cell j

and excitatory CA3 cell i, rate-based plasticity drives the weight from cell j to cell i,

W 1
ij, to its upper bound. If there is a low correlation, rate-based plasticity drives W 1

ij

to zero.

In order to evaluate the results of the model, I use two criteria to define a place

cell. First, a place cell must attain a spike rate of at least 3 Hz at some point on the

track. Second, the cell must have only one firing field. I define a firing field to be an

interval on the track over which the cell has a nonzero spike rate such that the cell

spikes at a rate greater than one-third its maximum rate at some point within the

interval.

Using these two criteria, I have found that place cells consistently comprise over

75 percent of the excitatory CA3 cells in my simulations given a range of parameter
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values. In reality, place cells comprise only about 20 percent of the CA3 cells in any

given environment (Knierim, personal communication, March 2009). However, it is

necessary to generate such a large percentage of place cells in the model because the

model simulates only 1200 excitatory CA3 cells, which is less than 1 percent of the

estimated 180,000 excitatory CA3 cells contained in the CA3 (Ascoli et al. [2]). Three

parameters significantly impact the formation of place fields: the learning rate of the

rate-based plasticity model, the upper bound for the weights from the MEC to the

CA3, and the variation in the base values for the network of grid cells.

3.1.1 Learning Rate

The rate-based plasticity model is effective only if the learning rate, specified by k

in Equation 2.3.1, is sufficiently large. A fast learning rate is necessary to handle

competition among different locations on the track. If the learning rate is high, when

the CA3 cell spikes, the weights from all grid cells that have a high spike rate at

that location are increased by a large enough amount that the cell has a much higher

probability of spiking at that same location on the track during the subsequent laps.

More importantly, the weights from the grid cells that do not have a high spike rate

at that location are decreased by a large enough amount that the cell has a small

probability of spiking at other locations on the track. If the learning rate is slow, the

weights oscillate back and forth, and the cell forms multiple firing fields.

To demonstrate the effect of the learning rate, I present a simplified example in
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Figure 3.1: Place field formation. Rate-based plasticity coupled with grid cell input
enables place cells to form in the CA3. (a,b) These two examples demonstrate the place
fields that form along the track. For each cell, I have plotted the average spike rate (Hz) for
each degree on the track. (c) The y-axis represents the track, where each position is defined
by its angle (deg). I show the firing fields of the first nineteen CA3 cells. (d)Rate-based
plasticity polarizes the weights from the MEC to the CA3, driving all weights to zero or to
their upper bound, which is 0.3 for this example. I initially set all weights to 0.18.
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which a CA3 cell receives input from twenty grid cells. I have set the parameters

of these grid cells so that each cell in group A, which consists of the first ten grid

cells, forms a single firing field centered at 120 degrees. Each cell in group B, which

consists of the last ten grid cells, forms a single firing field centered at 295 degrees.

All weights are initially set to 0.18. Holding all other parameters constant, I vary the

learning rate and examine how it affects the MEC input and the firing fields of the

CA3 cell. The MEC input at each degree on the track is given by

input(deg) =
360∑

deg=1

Wj(deg)Rj(deg), (3.1.1)

where Wj is the weight from MEC cell j to the CA3 cell, and Rj is the instantaneous

spike rate of MEC cell j.

Figure 3.1.1 shows the results of this experiment. When k = 0.05, the CA3 cell

forms two firing fields, one centered at 120 degrees and one centered at 295 degrees.

Due to the slow learning rate, the weights oscillate back and forth, and neither group

A nor group B obtains full control of the CA3 cell. If the learning rate is fast,

however, the CA3 cell forms a single firing field. When the rat passes 120 degrees

on the track, the weights from group A significantly increase while the weights from

group B significantly decrease. This causes the CA3 cell to spike very little, if at all,

when the rat passes 295 degrees. When the rat again passes 120 degrees, the CA3 cell

has a larger spike rate, further polarizing the weights between group A and group B.

A large range of values for the learning rate permits place fields to form. In

the simple example described above, I varied only the learning rate and held all
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other parameters constant. The CA3 cell consistently formed a single firing field for

k ∈ [0.5, 10].

Note that because the learning rule is fast, the locations of the place fields depend

on the rat’s initial position on the track. In the situation above, if the place cell were

to spike at 295 degrees before it spiked at 120 degrees, the place field would form

at 295 degrees. This is consistent with expeirmental data, in which place cells form

different firing fields in different environments.

3.1.2 Other Factors Affecting Place Field Formation

In addition to a fast learning rate, the variety in base values and the upper weight

bound also significantly impact the formation of place fields. Rate-based plasticity

isolates the location at which the place cell is driven by a large number of grid cells.

The success of the plasticity model requires this group of grid cells to have only one

firing location in common. If the group shares multiple firing locations along the

track, the place cell has no mechanism for choosing one location over another, and it

will form multiple firing fields. A variety of base values for the grid cells ensures that

a random group of grid cells generally does not have multiple firing fields in common.

In the model I randomly choose the bases of the grid cells from 28 cm and 50 cm,

which falls within the biologically realistic range (Witter and Moser [29]).

The third important factor is the choice of the upper bound for the weight from

MEC cells to excitatory CA3 cells. If this value is too small, CA3 cells never receive
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Figure 3.2: Effect of the learning rate. (a) MEC cells in group A form firing fields centered
at 120 degrees (left). MEC cells in group B form firing fields centered at 295 degrees. The
colorbar represents the sum of the spike rates (Hz) of each cell in the respective group.
(b-d) The CA3 cell forms a single place field given a sufficiently fast learning rate, k. The
two left plots show the input from all MEC cells to the CA3 cell. I calculate the MEC input
according to Equation 3.1.1. The center plot shows the average spike rate (Hz) of the CA3
cell taken over all 15 laps. The right plot shows the final weight distribution.
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enough input from the MEC to spike consistently. Place cells in this situation form a

weak place field over which the cell has a very low spike rate. If the upper bound is

too large, a single grid cell has too large of an impact on the CA3 cell. Because grid

cells spike at several locations, this causes the CA3 cell to spike at several locations

as well. The success of the rate-based plasticity model in forming place fields requires

the upper bound to be small enough such that the CA3 cell only spikes consistently

when a group of its presynaptic MEC cells spike together.

In my simulations, I set the density of connections between the MEC and the CA3

to be 20 percent. Because the model simulates far fewer grid cells than exist in the

MEC, this high density value is necessary to ensure that place cells receive enough

variety in their grid cell input. Using this density value, I have found that place fields

form given an upper weight bound between 0.2 and 0.3.

3.2 Backward Shift

As the rat circles the track in the double rotation experiment, place cells in the CA3

not only form single firing fields but also experience a backward shift in their fir-

ing fields. This backward shift is important for navigation and may have important

implications on the mismatch stage of the double rotation experiment, discussed in

Section 1.1.2. The place cells in the model also show this backward shift in their

firing fields as STDP changes the weights among excitatory CA3 cells.
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3.2.1 Simple Example

To provide some intuition for how STDP is successful in causing place fields to shift

backward, I begin with a simple example of a ring of twelve place cells. The cells are

arranged in a ring architecture, where each cell connects with its two neighbors, as

shown in Figure 3.2.1. Each place cell receives input from the MEC only when the rat

is at the location on the track corresponding to the cell number. Cell 1, for example,

only receives input when the rat is at the position on the track corresponding to the

number 1 on a clock. In this simple example, the track is small enough that the rat

completes a lap in 120 ms. This fast lap time allows a network of only twelve place

cells to represent the track.

As the rat runs clockwise around the track, STDP drives the network to a feed-

forward state in which each cell only receives CA3 input from the CA3 cell directly

preceeding it. As described in Section 2.3.2, the basic principle of STDP is that if

the presynaptic cell spikes before the postsynaptic cell, the weight increases; if the

postsynaptic cell spikes before the presynaptic cell, the weight decreases.

Consider the weights between Cell 1 and Cell 2. Each time the rat circles the

track, Cell 1 spikes before Cell 2. With respect to the connection from Cell 1 to

Cell 2, Cell 1 is the presynaptic cell, and Cell 2 is the postsynaptic cell. Thus when

Cell 1 spikes before Cell 2, the weight from Cell 1 to Cell 2 increases. On the other

hand, the weight from Cell 2 to Cell 1 decreases because in this case, the postsynaptic

cell spikes before the presynaptic cell. In this manner STDP drives all feedforward
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weights to their upper bound and drives all feedback weights to zero.

The resulting feedforward architecture causes a backward shift in the firing fields

of the place cells, demonstrated in Figure 3.2.1. Consider again the connection from

Cell 1 to Cell 2. As the weight from Cell 1 to Cell 2 increases, each spike from Cell 1

has a greater effect on Cell 2. This additional excitatory input causes the voltage of

Cell 2 to reach its threshold value sooner in time, resulting in a backward shift in its

firing field.

3.2.2 Backward Shift in the Full Model

Similar to the effect of STDP on the ring of place cells, STDP drives the weights

among CA3 place cells in the full model to a largely feedforward state in which place

fields shift backward. I initially set all weights among excitatory CA3 cells to 0.05, a

low enough value that CA3 interaction does not interfere with the formation of firing

fields due to grid cell input and rate-based plasticity. STDP then changes the weights

among excitatory CA3 cells at the same time that rate-based plasticity changes the

weights from MEC cells to excitatory CA3 cells. Figure 3.2.2 shows an example of

the resulting backward shift observed in the network of place cells.

Two different types of backward shift occur. Some place fields shift backward but

retain their shape, as shown in plot (a). Others become more skewed in the negative

direction, as shown in plot (b). The latter case is due to input from the MEC, which

does not shift backward.
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Figure 3.3: Simple example of the backward shift. This simple network consists of twelve
place cells in the CA3, each receiving input from the MEC at one location on the track.
(a) Each place cell initially connects with its two neighbors in the ring. (b) STDP drives
the network to a feedforward state in which each cell sends current to the cell following it
in the ring. (c) Each place cell shifts backward due to increased input from the place cell
preceeding it. Each dot represents the average firing field for a place cell during laps 1-4
(red), laps 5-12 (blue), laps 13-23 (green), and laps 24-30 (black). The firing fields become
stable after thirty laps because all weights have been driven to their upper or lower bound.
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The resulting weight distribution due to STDP is very different from the resulting

weight distribution due to rate-based plasticity. According to the rate-based plasticity

model I have implemented, weights can decrease even if the presynaptic cell has not

spiked. This causes every weight to be driven to its upper or lower bound. According

to the STDP model, weights change very little due to pairs of pre- and postsynaptic

spikes separated by more than 50 ms. In the model the rat takes 50 ms to pass each

degree on the track, which means that only weights between cells with overlapping

place fields change.

I calculate the shift of each cell by taking the difference of the center of mass

(COM) of the place field during the last five laps and the COM of the place field

during laps 3-7. I discount the first two laps to give place cells sufficient time to form

their place fields. The COM of a place field is given by

COM =

∑360
x=1 xR(x)∑360
x=1 R(x)

, (3.2.1)

where R(x) is the average spike rate of the cell at x degrees on the track. I then classify

each cell as having a backward shift if COM ≤ −1, a forward shift if COM ≥ 1, or

no shift if −1 < COM < 1.

As the rat circles the track, some place fields shift backward, some shift forward,

and some remain fixed. This variance in the place cell response agrees with experimen-

tal data, in which all three responses are observed (Knierim, personal communication,

March 2009). Despite this, the dominant effect of STDP is a backward shift. For

the example shown in Figure 3.2.2, the number of place fields that shift backward is
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almost double the number of place fields that shift forward. The mean of the shift

among all place cells is -0.88 degrees. I find similar results for other simulations using

a range of parameter values given in Table 2.3.2.
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Figure 3.4: Backward shift in the full network model. (a-d) These examples show the
backward shift in two inidividual CA3 cells. I again define each location on the track by
its angle (deg). The COM of the firing field for cell 108 is 291.9 degrees for laps 3-7 and
280.3 degrees for laps 16-20, giving cell 108 a backward shift of 11.6 degrees. Cell 145 has
a similar backward shift, but its place field becomes more skewed in the negative direction.
The COM of the firing field for cell 145 is 21.2 degrees for laps 3-7 and 16.1 degrees for
laps 16-20, giving it a backward shift of 5.1 degrees. (e) For this simulation 47.1 percent of
the place cells shift backward, 22.4 percent shift forward, and 30.5 percent do not shift. (f)
This histogram shows the shift of each place cell. The mean shift is -0.88 degrees.



Chapter 4

Conclusion

I have built a reliable computational model for the learning stage of the double ro-

tation experiment that predicts the behavior of place cells observed experimentally.

As the rat initially circles the track, rate-based plasticity changes the weights from

the MEC to the CA3 such that place cells integrate input from grid cells to form

single firing fields. STDP then changes the weights among the recurrent collateral

CA3 connections to cause the firing fields to shift backward along the track.

As discussed in Chapter 1, synaptic plasticity at work in the CA3 region of

the hippocampus is important for learning and memory as well as diseases such as

Alzheimer’s disease and epilepsy. Thus a better understanding of the effect of synap-

tic plasticity on the network of cells in the CA3 region would impact important areas

of research both inside and outside the context of spatial representation and naviga-

tion. Because it predicts biological phenomena, the model is a solid platform that I

52
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will expand and improve to shed light on the mechanisms underlying these important

functions.

4.1 Applications

Because I designed the model to simulate the learning stage of the double rotation

experiment, one direct application for the model is to simulate the mismatch stage

of the experiment as well. This second stage shows that place cells in the CA3 are

influenced by some unknown source or mechanism, resulting in a difference between

place cell behavior in the CA1 and in the CA3. Additionally, the model can be

expanded and applied to a variety of other areas outside of the spatial representation

setting.

4.1.1 Mismatch Stage of the Double Rotation Experiment

The mismatch stage of the double rotation experiment is performed after the rat has

learned the cues along the track and the place cells have formed their place fields.

In this stage the distal cues are rotated clockwise, and the local cues are rotated

counter-clockwise. As the rat again runs clockwise around the track, experimenters

record the response of grid cells in the MEC and place cells in the CA1 and CA3.

Figure 4.1.1 demonstrates the response of each group of cells.

The Knierim lab has found that most grid cells rotate clockwise with the distal cues

and shift (Knierim, personal communication, March 6, 2009). The shift is important
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because it drastically changes the locations on the track at which the grid cell spikes.

Consider a grid cell that has two grid points lying directly on the track, shown in red

in Figure 4.1.1c. When the grid rotates, the two red grid points still lie directly on

the track. Thus without a shift, the grid cell’s firing fields would simply rotate along

with the distal cues. When the grid shifts, however, the two grid points marked in

red fall off the track, no longer affecting the firing fields of the grid cell. Two new

grid points, however, shift onto the track, causing the grid cell to spike at locations

unrelated to the rotation of the cues.

Because the grid cells have shifted, place cells receive very different input from the

grid cells after the cues have been rotated. Most place cells in the CA1 respond by

either rotating with the distal cues or remapping, forming a new firing field unrelated

to the rotation of the cues (Lee et al. [19]). The former response is due to the rotation

of grid cells with the distal cues, and the latter response is due to the shift of grid

cells, changing the locations at which a place cell receives its input.

Place cells in the CA3, however, respond very differently. While some remap,

most place cells rotate counter-clockwise, following the local cues (Lee et al. [19]).

This implies that some source or mechanism other than grid cell input controls the

firing fields of these CA3 place cells when the environment changes. As discussed

in Section 1.1, although place cells receive the majority of their spatial input from

grid cells in the MEC, they also receive weak spatial input from cells in the LEC.

Knierim has hypothesized that if the weak input from the LEC, which is difficult to
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analyze, were to shift with the local cues, the tendency of place cells to already shift

backward may combine with this weak LEC input to cause place cells to follow the

local cues (Knierim, personal communication, March 6, 2009). Because the compu-

tational model accurately predicts behavior of cells during the learning stage of the

experiment, one direct application for the model is to simulate the mismatch stage of

the experiment to test this hypothesis.

4.1.2 Various Other Applications

Synaptic plasticity is essential for learning and memory to take place in the brain.

Thus the model can be adapted and applied to a variety of settings concerning learning

and memory in general. One application related to the formation of place cells in

the CA3 is the formation of grid cells in the MEC. Grid cells receive input from

head direction cells, which primarily spike when the rat’s head is facing a certain

direction. Grid cells integrate this directional input along with input concerning the

rat’s velocity to form firing fields in hexagonal patterns. Incorporating head direction

cells into the model would allow me to investigate the formation of grid cells and

provide a more complete platform for studying spatial representation and navigation

in the brain.

The study of epilepsy is an important application of the model outside the context

of spatial representation. At the onset of an epileptic seizure, a group of cells in the

brain spikes synchronously at a much higher rate than normally. Because a burst



56

(a) (b)

(c)

Original Grid Rotated Grid Rotated and Shifted Grid

(d) (e)

Figure 4.1: Cell response to the double rotation of cues. (a) This picture shows an
overhead view of the local and distal cues along the track in their original positions. (b)
During the mismatch stage, the distal cues are rotated clockwise, and the local cues are
rotated counter-clockwise. The mismatch is 90 degrees for this example. (c) Grid cells
rotate with the distal cues, then shift. The dots represent grid points of a grid cell. Before
the double rotation, the grid cell spikes when the rat nears one of its two red grid points.
After the double rotation, however, these red grid points have shifted off the track and no
longer affect the cell. (c) Most place cells in the CA1 rotate with the distal cues or remap.
(d) Most place cells in the CA3 rotate with the local cues, in the opposite direction of the
rotation of the grid cells. Taken from Lee et al. [19].
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of spikes from a single presynaptic cell in the CA3 can cause a burst of spikes in

a postsynaptic cell, the CA3 region of the hippocampus has a low threshold for

the generation of an epileptic seizure (Traub et al. [28]). This thesis provides the

foundation for studying epilepsy because it focuses on synaptic plasticity in the CA3

region of the hippocampus.

4.2 Future Work

Although the model in its current state predicts the formation and backward shift of

place fields in the CA3, several improvements must be made to the model to make

it useful for applications such as those described in the previous section. The model

is computationally limited in the number of cells it can simulate, as described in

Chapter 3. Given the network size that I used for this work, the system has almost

0.5 million dynamic variables that must be updated at each timestep. Consequently,

the simulated rat of the model currently takes about ten minutes to complete a single

lap, a feat that takes an actual rat about eighteen seconds to complete. Motivated by

these computational limitations, I will work to improve the speed and capability of the

model by implementing the code in PETSc and applying model reduction techniques

to the weight matrices.

I will also improve the model by increasing the accuracy of approximating the

dynamics of both individual cells and of the weights influenced by synaptic plasticity.

The accuracy of the integrate and fire model in predicting spike times of a cell is
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sufficient for the double rotation experiment, but other applications may require a

more accurate model. Furthermore, while experimenters such as Markrum, Bi, and

Poo have shown that STDP occurs in the brain, STDP cannot explain the depen-

dence of the weight change on rate, which is also observed experimentally (Sjöstrom

et al. [25]). One alternative to the STDP model is a biophysical plasticity model

developed by Shouval. I will implement other plasticity models such as Shouval’s to

provide the user a greater choice in the plasticity model used.

4.2.1 Improvements to the Model’s Speed and Capability

I will improve the speed and capability of the model in two ways. First, I will

parallelize the code using the Portable, Extensible Toolkit for Scientific Computation

(PETSc) software. This software is an ongoing project among a collaboration of

computer scientists that allows the user to implement code in parallel with as much

ease as implementing code in C. PETSc was first made available to users in 1995,

and the creators continue to make improvements on the software to this day (Balay

et al. [3]).

In 2007 Kellems implemented an integrate and fire network of cells in the PETSc

environment. Figure 4.2.1 shows the speed-up of his model as he incorporated more

processors. I will build on the work that Kellems has done to add synaptic plasticity

to his integrate and fire network, taking advantage of the fast matrix-vector products

in PETSc.
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Figure 4.2: Speed-up in PETSc. Kellems has developed a model for a network of cells
using the integrate and fire model. Both the initialization time and the simulation time sig-
nificantly decreased as he incorporated more processors. I will be adding synaptic plasticity
to his model. Taken from [17].

In addition to implementing the code in PETSc, I will also apply model reduction

techniques to the weight matrices. Using these techniques I will increase the speed

and capability of the model by identifying the weights that significantly affect the

system and approximating the dynamics using a lower dimensional weight matrix.

4.2.2 Improvements to the Model’s Accuracy

I have implemented the integrate and fire model to approximate the single-cell dynam-

ics. This model is computationally inexpensive, but does not take into account many

biological factors, such as the distance between the synapse and the cell body. Kellems
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is currently applying model reduction techniques to develop a model for single-cell dy-

namcics that is both accurate and computationally inexpensive (Kellems et al. [18]).

In the future I will replace the integrate and fire model I am currently using with his

accurate model for single-cell dynamics.

I approximate the dynamics of the weights among CA3 cells using the STDP model

developed by Froemke and Dan. While this model explains the weight change in

certain situations, it cannot explain all experimental results. For example, Markrum,

one of the initial researchers who experimentally observed STDP, found that LTP

could only be induced when the frequency of the spike pairs was at least 10 Hz

(Markrum et al. [20]). STDP cannot explain this rate dependence. The STDP model

is also dependent on the choice of the upper bound for the weight, which has no

biological significance.

One alternative to this phenomenological model is a biophysical model for synaptic

plastictity based on the biological properties of the synapse. Shouval has developed

such a model that can explain the weight change due to both rate-based plasticity

and spike-timing-dependent plasticity. His model is based largely on the dynamics of

calcium, which is necessary for synaptic plasticity to occur (Castellani et al. [6]).

4.3 Summary

I have built a computational model examining the effect of synaptic plasticity on spa-

tial representation and navigation. This model brings together established paradigms
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concerning the firing behavior of grid cells, rate-based plasticity, and spike-timing-

dependent plasticity. The model predicts that synaptic plasticity enables place cells

in the CA3 to integrate input from grid cells in the MEC to form single firing fields

that shift backward along a learned route, as seen in experiments such as the double

rotation experiment.

Because the model agrees with experimental results, it has become a reliable

platform that I can adapt and apply to a variety of settings concerning synaptic

plasticity within a network of neurons. One such application is the study of the

onset of epileptic seizures, a network phenomena that largely depends on synaptic

plasticity. As I build on the platform developed in this work by implementing the

model in PETSc, applying model reduction techniques to the weight matrices, and

incorporating other methods for approximating single-cell dynamics and synaptic

plasticity, the model will become a useful, reliable tool for investigating network

dynamics.
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