Outline of Traub and Miles: Chapter 5

VIGRE Spring 2006
February 22, 2006

1 Questions

- How do we transfer what we know from experiment \Rightarrow computer simulation?
- How many cells cells should we use, what types of cells should we use?
- How do we arrange cells in space?
- How do we describe communication both functionally and structurally?
- How many synapses of each type (i.e. excitatory, $\operatorname{GABA}_{A}, \mathrm{GABA}_{B}$)?
- Functional issues: How to handle axion action potentials, axon conduction delays, transformation of pre synaptic impulses to post synaptic conductance changes?
- Structural issues: How to handle distribution of axonal output?

2 Cells!

- We have 3 types of cells:

1. Fast Inhibitory $\left(i_{1}\right)$ cells: Inhibitory cells with post synaptic effects resembling GABA $_{A}$ receptors
2. Slow Inhibitory $\left(i_{2}\right)$ cells: Inhibitory cells with effects resembling GABA $_{B}$ receptors
3. Pyramidal (e) cells: Excitatory cells

- Major simplifications have been made to i_{1} cells. The produced unitary conductances and intrinsic properties of different i_{1} cells are the same. In practice, however, IPSPs are seen with differing firing patterns, amplitude, latency and time course.
- Ratio of e:i cells is $10: 1$, number of i_{1} and i_{2} cells is the same

2.1 How Many Cells?

- Goal: To achieve the same number of cells as with experimental CA3 preparations within a factor of 2 or 3
- We want to be able to keep parameters physiological (i.e. number of inputs per cell, conductance strength, etc)
- 20000 cells in longitudinal slice, our model has $9000 e$ cells and $900 i$ cells.
- Significant simulated neuronal populations are critical to population dynamics

2.2 Intrinsic Properties Of The Cells

- In addition to our pyramidal cell model, we have "generic" interneurons formed by omitting $g_{C a}, g_{K[C A]}$, and the voltage dependence of g_{k}
- Most i cells are treated as generic
- Excitatory synapses onto all i cells are different than excitatory synapses onto other e cells.

2.3 Arrangement of cells in space

- e Cells are arranged in a $40 \times n$ array, with n varying with the size of the simulation
- $n=225$ for the full longitudinal slice models in the book
- We use 40 since we have 400μ slices, 20μ soma diameters, and 2 or 3 layers in each slice for excitatory cells
- i cells arranged in a superimposed $4 \times n$ array.

3 Intracellular Communication

3.1 Transduction of soma potentials into axonal output

- We don't explicitly simulate a portion of the axon; saves considerable computation time due to the fast kinetics involved
- Cell sends output if depolarized beyond threshold (20 mV relative to rest) and if no output has been sent in the past 3 ms (Experimentally observed refractory period 2-4ms).

3.2 Conduction Delays

- Only on e cell axons.
- None on i cells, which assumes i cells are localized
- Potential travels down axon at $0.5 \mathrm{~m} / \mathrm{s}$. Note with a $5-10 \mathrm{~mm}$ long slice, delays can be on the order of 10 ms if an axon runs across the entire slice.
- We need to be careful to make sure all potentials depart and arrive when and where correctly.

3.3 Synaptic Actions

- Four Types:

1. Excitatory synapses onto dendrites of e cells
2. Excitatory synapses onto somata of i cells
3. Fast inhibitory onto somata and proximal dendrites of both e and i cells (recall these are from i_{1} cells)
4. Slow inhibitory onto dendrites of both e and i cells (recall these are from i_{2} cells)

- Refer back to equations in Chapter 4, see Figure 5.1
- A synaptic action consists of two separate stages:

1. Activation: the release of neurotransmitter across synaptic cleft, interaction between transmitter and receptors, and all couping involved from receptor \rightarrow channels. We use $3,1,1,40 \mathrm{~ms}$ for $e \rightarrow e, e \rightarrow i, i_{1}, i_{2}$ respectively
2. First order Kinetics: Relaxation of activated channels. We use $4,1,7,100 \mathrm{~ms}$.

- When a presynaptic signal arrives, it exerts a constant activating effect for $3,1,1,40 \mathrm{~ms}$.
- Conductance changes all add linearly (no interaction between inputs from different conductance changes)
- Implementation outlined on p. 108

3.4 Arrangement of Synaptic Connections

- First we determine number of e and i inputs per cell
- Full 9900 cell model has 20 inputs per cell
- Can use globally random approach to forming connections, every cell has same probability to connect to every other cell
- Can use locally random:

$$
p(\text { Connection from cell } M \text { to } L)=p(L) e^{-\frac{d(L, M)}{\lambda}}
$$

where $p(L)$ scales to ensure a certain average number of connections, λ used to determine localization

- $\lambda_{e}=30, \lambda_{i}=6$, so i cells are much more localized than e cells

3.5 Inhibition onto e cells versus i cells

- The slow IPSP to i cells is the same as to e cells
- Maximum conductance for fast IPSP $\rightarrow i$ cells is kept at 40% of conductance for fast IPSP $\rightarrow e$ cells
- This is primarily done to limit disinhibition

3.6 Electrotonic synapses (gap junctions)

- Not incorporated

3.7 Test Runs

- Look at Figures 5.4, 5.5, 5.6 for network illustrations
- A brief local shock used for the full model

1. EPSPs in nearby cells to the shock fire
2. Inhibition terminates depolarization resulting in a long AHP (100s of ms)
3. 1 mm away, stimulus evokes both EPSPs and IPSPs
4. No significant response $4-5 \mathrm{~mm}$ away

- The remainder of the chapter discusses technical computational aspects of their code, discussion not necessary for this outline.

