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Supplementary information 
 
Quantification of predictability 
 
The main method of this paper is quantitative estimation of the predictability of a spike 
train from a predictor variable, which may be any combination of spatial location, theta 
phase, or peer activity (Figure S1).  We will first explain the method of predicting the 
spike train solely from position. 
 
A 10-fold cross-validation procedure1 is used to repeatedly divide the recorded data into a 
“training set” and a “test set”.  The training set is used to construct a predicted intensity 
as a function of space ( )f x , i.e. a place map. 
 
The place map constructed from the training set is then evaluated on the test set.  The 
position ( )x t at each moment of the test set, and the place field ( )f x constructed from the 

training set are used to produce an estimated intensity at each time, ( ) ( )( )f t f x t= .  The 
log-likelihood density of the actual spike train{ }st under this estimated distribution can be 
shown to be 
 
 ( ) ( )logf s

s
L f t dt f t= − +∑∫  (1) 

 
The training set is also used to construct a mean firing rate independent of position, 0f , 
defined as the number of spikes during the training period divided by the length of the 
training period.  The predictability on the test set is defined to be the difference, 

0ff LL − .  It therefore gives the log likelihood ratio of the data under the two predicted 
intensity models, ( )xf , and the constant 0f .  The predictability of the entire data set is 
defined by a cross-validation procedure, where the data is divided into 10 segments, each 
segment is in turn used as test set, and the log likelihood ratios for each segment are 
summed and divided by the total time (Figure S2). 
 
This predictability measure also has an intuitive interpretation.  Suppose an observer 
wants to communicate whether a spike occurred at a given time instant.  She or he can 
communicate this most concisely using a code derived from her or his best estimate of 
the probability of spike occurrence.  The number of bits needed, on average, to 
communicate using this code is the expected negative log2 likelihood under this estimated 
distribution2.  The predictability measure estimates the number of bits saved by an 
observer who is allowed to use the instantaneous position of the animal to construct a 
code, compared to one who can only use the mean firing rate.   
 
The use of cross-validation guards against artificial overestimation of spike train 
predictability.  For example, if firing probability is independent of position, an observer 
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using position to help encode the spike train would actually use more bits than one who 
used mean firing rate, because the random fluctuations in the training would result in a 
worse code used to encode the test set spike train.  However, if cross-validation were not 
used, random fluctuations in the data set would lead to an illusory saving of bits needed 
to transmit the spike train. 
 
Construction of Place Fields 
 
Prediction of intensity from location is equivalent to construction of a place field. Here 
we construct place fields by a smoothing-based method, where we divide a smoothed 
spike count map by a smoothed occupancy map.  The estimated intensity at a point x is 
given by 
 

 ( )
( )

( )
t t

t

t
t

n w x x
f x dt

w x x

−
=

−

∑
∑

 (2) 

 
Here, tn is the number of spikes fired in a given time bin, ix is the position of the rat in 
that time bin, and dt  is the time bin size.  The smoothing function w is a Gaussian with a 
variable width parameter: 
 
 ( ) 2 2exp( / 2 )w d d λ= −  (3) 
 
By comparing prediction quality with varying values of the smoothing width λ , we 
found that the optimal value for this parameter was ~5cm (see figure S3 below). 
 
We note that the above method for place field computation is a form of locally weighted 
maximum likelihood estimation3, where the intensity xf at a point x is chosen by 
maximizing a weighted sum of log-likelihoods of each time bin under a Poisson 
distribution, with weights given by ( )txxw − : 
 
 ( ) ( ) ( )logx t x t x

t
L f w x x f dt n f dt= − − +  ∑  (4) 

 
 
Construction of Phase Fields 
 
The preferred phase of pyramidal cell spikes with respect to the theta rhythm varies with 
the animal’s location in space4-7.  We may therefore predict the spike trains more 
accurately by allowing the predicted intensity to vary as a function of theta phase.  To do 
this, we must quantify the dependence of the cell’s phase preference on spatial position.  
We do this again using locally weighted maximum likelihood estimation.  We fit the 
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phases of all spikes to a von Mises distribution8 whose parameters xθ (mean phase) and 

xκ (modulation depth) vary with position x, to minimize the weighted likelihood   
 

 ( ) ( ) ( )( )
( )0

exp cos
,

2
x x s

x x s
s x

L w x x
I

κ θ θ
θ κ

π κ
−

= −∑  (5) 

 
Here, the sum is over all spikes s, and sx and sθ are the position and instantaneous theta 
phase at the time of spike s.  As with place fields, the local maximum likelihood estimate 
may be efficiently computed by a smoothing method, according to the following 
formulas: 
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where 1A is the ratio of Bessel functions ( ) ( ) ( )yIyIyA 011 =  8.  In order to regularize 
against over-fitting in areas where few spikes were fired, a constant term of 1 was added 
to the denominator in (7). 
 
The predicted intensity from position and phase is the product of the place field term and 
a phase modulation term: 
 

 ( ) ( )( )
( )0

exp cosx t x
t t

x

f f x
I

κ θ θ
κ

−
=  (8) 

 
 
Prediction of unit activity from population 
 
To predict the activity of one cell from the population of peer cells, we used a generalized 
linear model9.  Initially, the spike trains of the peer cells are smeared in the time domain 
with a Gaussian function of variable width σ (the peer prediction timescale): 
 

 ( )( )2 2

2

1 exp 2
2

ts t
α

α α
τ

τ σ
πσ

= −∑  (9) 
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Here the sum runs over all spikes of cell α .  Under the generalized linear model, the 
predicted intensity at a time t is given by 
 

 t tf g s wα α
α

 =  
 
∑  (10) 

 
The link function )(ηg had the following form: 
 

 
exp( ) 0

( )
1 0

g
η η

η
η η

<
=  + ≥

 (11) 

 
A simple exponential was not used, because this led to excessively high predicted 
intensities in the case when many positively predicting peer cells were firing 
simultaneously. 
 
The prediction weights αw were chosen to maximize the penalized log-likelihood on the 
training set 

 

 ( ) 21log
4t t t

t
L f dt n f dt wα

α
= − + −  ∑ ∑  (12) 

 
The maximization is carried out by Newton’s method with an analytically calculated 
Hessian matrix.  The penalty term helped to prevent over-fitting by reducing large weight 
values that did not substantially improve prediction quality on the training set. 
 
Prediction of unit activity from position and population 
 
When spike trains were to be predicted from spatial variables, in combination with peer 
prediction, the peer prediction function was multiplied with the spatial prediction 
function: 
 

 ( ) ( )( )
( )0

exp cosx t x
t t t

x

f f x g s w
I α α

α

κ θ θ
κ

−  =  
 
∑  (13) 

 
 
This formula was used to examine whether the prediction of the spike train, made from 
spatial and phase variables, may be further improved by taking into account the activity 
of peer cells.  The weights in this case are not necessarily the same as those when activity 
is predicted from peer cells alone, and are recomputed using Newton’s method as those 
that maximize the penalized likelihood of the product of spatial and peer prediction 
intensities on the training set. 
 
Use of prediction method to estimate spatial scale of place field 
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Figure S3.  Computation of place fields involves the use of a spatial smoothing scale.  
The cross-validation method may be used to ensure the use of an optimal smoothing 
scale. a) Place fields of the same cell, computed for three different values of smoothing 
scale. At 3cm, the place field shows a high degree of spatial structure; however, this 
structure arises from random fluctuations, rather than reliable place preferences of the 
neuron (under-smoothing). At 10cm, the place field is nearly circular; however, 
smoothing at this scale loses does not capture the full spatial structure of the place field 
(over-smoothing). b) Optimal smoothing scale was estimated by predicting the cell’s 
activity from space alone, for a range of smoothing scales.  Peak predictability was at 
5.6cm for this cell.  If information rate was computed by a direct method10, without cross-
validation, the apparent information content of the cell increased without bound as the 
spatial scale was lowered, indicating that cross-validation is necessary to protect against 
under-smoothing.  c) Across the population, the median optimal smoothing scale was 
found to be 5cm. 
 
Relation of predictability to spike train characteristics 
 
Figure S4a.  Dependence of “supra-spatial” peer predictability (Peer Gain) on isolation 
quality of target cell.  Unit isolation quality was assessed using the “isolation distance” 
measure11. When all initially clustered cells are considered, including those below the 
isolation distance threshold (shown in black), a significant correlation is found between 
predictability and isolation quality (p<0.001, red line), indicating that poorly isolated 
cells are less predictable from peers.  However, if only those cells that passed the 
isolation distance threshold of 20 are considered, no correlation is seen (p>0.5, green 
line).  We therefore only considered these cells for further analysis. 
 
Figure S4b and c.  Supra-spatial peer predictability, measured in bits/sec, is positively 
correlated with target cell firing rate (Fig S4b; p<0.001).  However, if the predictability 
measure is normalized by the firing rate of the target cell to give a measurement of bits 
per spike, a negative correlation is observed (Fig S4c; p<0.001).  This suggests that faster 
firing cells are more predictable simply because there are more spikes whose occurrence 
can be predicted.  Furthermore, the negative correlation of target cell firing rate with bits 
per spike suggests a rule of “diminishing returns” for high-firing cells. 
 
Figure S4d. Peer predictability increases with the number of peer predictor cells (red line; 
slope 0.12 bits/spike/cell; p<0.001).  To ensure the effect was not unduly influenced by 
one animal with the largest number of cells (42 of the 189 passing the isolation criteria), 
the analysis was repeated with this animal excluded (green line).  Fits were constrained to 
pass through the origin (zero cells provide zero predictability). 
 
Figure S4e.  Peer predictability appears to be negatively correlated with data set size (i.e. 
length of recording)(red line; p<0.01).  However, this correlation is entirely due to a 
single animal with a large number of cells and a short recording time. If this recording is 
excluded, the correlation disappears (green line). 
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Figure S4f.  Peer predictability is correlated with spike train variability, as measured by 
the Fano factor12 (p=0.003).  The Fano factor can be defined using variable window sizes; 
a significant positive correlation of variability with predictability was seen for all 
windows greater than or equal to 25ms (the Fano factor displayed here is calculated with 
a window of 50ms). This observation suggests that neurons exhibiting greater spike train 
variability also show a higher gain in predictability using peer activity over location 
alone. 
  
The timescale at which neuronal spikes were best predictable from population activity 
showed a clear mode at approximately 25ms (Fig 3b, main paper).  Nevertheless, some 
cells showed optimal prediction timescale different to this value.  To clarify which 
neuronal characteristics correlate with non-standard predictability timescale, we divided 
cells into two categories, those whose predictability timescale was close to the mode (in 
the range 10-40ms), and all other cells.  We performed a multiple logistic regression 
analysis9 to predict the category a cell belonged to using the following array of predictor 
variables: Isolation quality, number of predictor cells, total recording length, spike train 
variability (Fano factor), and predictability from space.  A significant effect was found 
for isolation quality and number of predictor cells, both of which correlated positively 
with the probability that the cell would show optimal predictability in the range 10-40ms 
(p=0.01 and 0.0008, respectively).  None of the other predictor variables showed a 
significant effect.  We therefore concluded that the scatter in predictability timescales 
was related to properties of the extracellular recording, rather than properties of the cell 
itself, or its relation to network activity. 
 
Relation of prediction weight to location of place fields 
 
Figure S5a) The phase of firing of hippocampal pyramidal cells is known to depend on 
the animal’s location in space4, with mean phase close to the negative peak of pyramidal 
layer theta cycle in the center of a place field, and close to the positive peak in the 
periphery.  One would therefore expect correlations between cells to depend on the 
spatial overlap of their place fields5.  b) The prediction weight indicates the degree to 
which correlations differ from those expected if spike timing was solely determined by 
spatial location. Prediction weight is shown as a function of the degree of place field 
overlap (computed as the scalar product of the normalized place field maps), for each pair 
of cells. While prediction weights are highly variable, there is a weak but significant 
correlation between prediction weight and the degree of place field overlap (r=0.17; 
p<0.0001), indicating decreased or increased synchronization of cells beyond that 
predicted from simultaneous independent theta phase precession.   The large scatter about 
the fit line suggests that non-spatial factors also play a role in determining correlation 
strength. 
 
Relation of prediction weight to anatomical location within the CA1 region 
 
Figure S6. a) Example relation between anatomical location and prediction weight. 
Vertical cell location in the pyramidal layer was estimated from the mean spike 
waveform for each cell recorded by the 8-site silicon electrode shank, whereas lateral 
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position was determined from the intershank distance (200 µm).  Predictor cells 
(triangles) are color-coded by prediction weight (red positive, blue negative) to a 
representative target cell (star).  No cells on the target cell shank were used as predictor 
cells to avoid spurious synchrony caused by isolation errors13.  No consistent anatomical 
distribution of positively or negatively weighted cells was seen. b. Across the population, 
no relation was seen between the anatomical spacing of cells (shank separation), and 
prediction weight (linear regression, red line, p=0.47).  However, because we avoided 
prediction of neuronal activity from extremely anatomically proximal neurons13 (<100 
µm), we cannot ascertain whether these extremely proximal neurons would show a 
reliable difference in prediction weight. 
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