
Networks of Integrate–and–Fire Cells

We follow Dayan & Abbott, Theoretical Neuroscience, §5.5, and, starting from V (0) =
EL, solve

τmV ′(t) = EL − V (t) + RmI(t)

until V (t) reaches Vth, at which time we reset V to rest and resume. We have coded this
in iaf1.m and included a representative run below.
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Figure 1. See iaf1.m for parameter values.

It is customary to include an additional dynamical conductance with a potassium
reversal potential that suffices to mimic spike rate adaptation. Starting from V (0) = EL

and gsra(0) = 0 we solve

τmV ′(t) = EL − V (t) + RmI(t) − rmgsra(t)(V (t) − EK)

τsrag′

sra(t) = −gsra(t)

until V (t) reaches Vth, at which time we reset V and increment gsra and resume. We have
coded this in iaf2.m and included a representative run below.
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Figure 2. See iaf2.m for parameter values.
We now suppose we have a network of cells and denote the potentials by V1 through

VN and their associated sra conductances by gsra,1 through gsra,N . We denote by wi,j and
Ei,j the synaptic weight and reversal potential at the synapse from cell j onto cell i. The
synaptic conductance that follows firing of cell j at time tj is the alpha function

αj(t) = (t − tj) exp(3(tj − t)).

It follows then that the synaptic current onto cell i is

Isyn,i(t) =
N∑

j=1

wi,jαj(t)(Vi(t) − Ei,j)

So, we solve the full system

τmV ′

i (t) = EL − Vi(t) + RmIi(t) − rmgsra(t)(Vi(t) − EK) − rmIsyn,i(t)

τsrag′

sra,i(t) = −gsra,i(t)

We have coded this in iaf2net.m for the simple 7 cell 3 layer net below.
Rather than plotting spikes we simply track their times
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Figure 3. A net and its response. See iaf2net.m for details
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