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1. Single Cable – The starting point for treating dendritic trees is to examine a single section of
dendrite, represented by an unbranched cable. Consider a cylindrical section of the cable with radius
a, width ∆x, and axial resistivity R:
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Current balance on the cylindrical section yields the equation:
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We now have the cable equation:

G(a2Vx)x = a[CVt + g(V − E)] (1)

where G = 1/2R

2. Dendritic Tree – The dendritic arbor can be represented as a binary tree – each junction is a
branchpoint for three cables. We may split and enumerate the dendritic tree as N cables, represented

1



by one-dimensional domains Ω1, Ω2, . . . , ΩN . Ωk = [Ak, Bk]. As such, entire tree is represented by the
domain Ω = Ω1∪Ω2∪. . .∪ΩN . The order in which we connect the branches may affect the complexity
of the linear solve after spatial discretization. The ordering method proposed by Michael Hines allows
us to take advantage of the structure of the matrices produced by finite element discretization.

• Arrange the branches by ‘depth’ of branching:

Soma

Apical TreeBasal Tree

L1

L2

L3

The Hines ordering is simple: we define the soma of the neuron to be represented by the point BN .
If LY is a ‘deeper level of branching’ than the LX (say LY > LX , LY represents branches farther
away from soma than LX), then for Ωy ∈ LY and Ωx ∈ LX , By is identical to Ax (a branchpoint).
Finally, if some other branch j is connected to the soma, then Bj is identical to BN .

• Thus, the set of all branchpoints is the intersection W = Ω1 ∩ Ω2 ∩ . . . ∩ ΩN .

• There are T levels in all.

• At each branchpoint, axial currents must be balanced. At a branchpoints, space derivatives of
voltage exist in three directions. As such:
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• The terminal branches don’t give rise to a further level of branching. The set of terminal points
∂Ω is the boundary of the dendritic tree. ∂Ω = {Bk : Bk = sup Ωk, Ωk ∈ LT}.
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3. Formulation of problem – If we describe the dendritic tree as a binary tree, the problem is
formulated as:

G(a2Vx)x = a[CVt + g(V − E)]

V (x, to) = E ∀x ∈ Ω (Initial condition)

Vx(x, t) = 0 ∀x ∈ ∂Ω t > to (sealed terminals boundary condition)

Vx|BN
+ Vx|BN−1

=
RI(t)

πa2(BN)
t > to (stimulus current I at soma)

4. Example – This example problem will focus on the fundamental dendritic fork – the basic element
in a dendritic arbor. Note that in this case, the soma is not a branchpoint.

Soma

It is easy to see that there are two levels of branching. According to the Hines ordering scheme, the
dendrites are numbered as follows:

Ω1

Ω2

Ω3

A1

A2

A3

B3

B2

B1

We proceed with solution by finite elements. The weak formulation:
∫

Ω

G(a2Vx)xUdx =

∫

Ω

a[CVt + g(V − E)]Udx

Examine each individual branch:
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∫
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∫
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(c)
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Integrate by parts the left hand sides
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For this example, let’s assume a is constant over space. Write V in terms of hat functions φ, where
h is the step size between nodes assigned to each branch:

φ(x, hl, hr) =







1/h(x − (i − 1)hl) if xi−1 < x < xi,

−1/h(x − (i + 1)hr) if xi ≤ x < xi+1,

0 otherwise.

(2)

The potential function is approximated by linearly composing hats. The potential function is dis-
cretized into a vector of N1 + N2 + N3 coefficients with vb the membrane potential at the single
branchpoint. Nk denotes the number of nodes assigned to branch k (including the branchpoint for
nonterminal branches).

V ≈

N3
∑

i=0
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where x ∈ Ω3, y ∈ Ω2, z ∈ Ω1.

Substituting V , we get the system of equations
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The system in matrix vector notation:

~I(t) + ~B = M~vt + (L + K)~v
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5. Branch Ordering Revisited

The spatial discretization essentially produce a matrix equation

A~x = ~b

to be solved for ~x at every time step. A not only contains numerical information; the neuronal mor-
phology is encoded in the sparsity pattern. For the simulated single neurons, A is always symmetric
and nearly tridiagonal. If the neuron consists of a soma and a straight fiber A will be tridiagonal.
On the other hand, if each discretized compartment is a branch itself, A will hardly be tridiagonal.
Though, if the Hines reordering method is used, A for the latter case will be essentially tridiagonal.
Given the special nature of A, it is inefficient to use a general Guassian elimination algorithm to solve
for ~x, especially if the Hines ordering is used, in which case a barely modified tridiagonal solver, whose
computation time scales proportional to the size of A, is sufficient. This example, the discretized
triple-branched neuron, illustrates the importance of the Hines ordering method.

Soma

An intuitive method of numbering the nodes assigns increasing branch numbers moving away from
the soma like so
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The left-hand-side matrix that corresponds to this numbering scheme is

A =

























A1,1 A1,2 0 0 0 0 0 0 0
A2,1 A2,2 A2,3 0 0 0 0 0 0
0 A3,2 A3,3 A3,4 0 0 A3,7 0 0
0 0 A4,3 A4,4 A4,5 0 0 0 0
0 0 0 A5,4 A5,5 A5,6 0 0 0
0 0 0 0 A6,5 A6,6 0 0 0
0 0 A7,3 0 0 0 A7,7 A7,8 0
0 0 0 0 0 0 A8,7 A8,8 A8,9

0 0 0 0 0 0 0 A9,8 A9,9

























A one-step-per-node diagonalizing algorithm used to eliminate the lower diagonal elements will run
into problems at A7,7 where unwanted fill-in of entry A7,4 will occur – a more general elimination
algorithm must be used. Consider a rather common pyramidal neuron with two large dendritic trees,
ℓ branches in total (only bifurcating branches). Any numbering scheme that assigns higher branch
numbers to branches that are “further away” (in terms of depth as defined earlier) will encounter at
least ℓ/2− 1 entries in matrix A where a general elimination algorithm must be used. This dramat-
ically lowers the overall efficiency of solving for ~x.

The Hines method assigns larger branch indices to branches “closer” to the soma. Furthermore, the
nodes within each branch end up numbered in increasing order moving closer to the branch/parent
node.

This ensures that any branch in the neuron is only coupled to one other branch, which has a larger
branch index. As such, A looks like
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A =

























A1,1 A1,2 0 0 0 0 0 0 0
A2,1 A2,2 A2,3 0 0 0 0 0 0
0 A3,2 A3,3 0 0 0 A3,7 0 0
0 0 0 A4,4 A4,5 0 0 0 0
0 0 0 A5,4 A5,5 A5,6 0 0 0
0 0 0 0 A6,5 A6,6 A6,7 0 0
0 0 A7,3 0 0 A7,6 A7,7 A7,8 0
0 0 0 0 0 0 A8,7 A8,8 A8,9

0 0 0 0 0 0 0 A9,8 A9,9

























A slightly modified tridiagonal solver is sufficient for the Hines matrix, which is essentially a tridiag-
onal matrix. Fill-in problems can now be avoided.
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