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Abstract We discuss numerical methods for simulating
large-scale, integrate-and-fire (I&F) neuronal networks. Im-
portant elements in our numerical methods are (i) a neuro-
physiologically inspired integrating factor which casts the
solution as a numerically tractable integral equation, and
allows us to obtain stable and accurate individual neuronal
trajectories (i.e., voltage and conductance time-courses) even
when the I&F neuronal equations are stiff, such as in strongly
fluctuating, high-conductance states; (ii) an iterated process
of spike-spike corrections within groups of strongly cou-
pled neurons to account for spike-spike interactions within
a single large numerical time-step; and (iii) a clustering pro-
cedure of firing events in the network to take advantage of
localized architectures, such as spatial scales of strong local
interactions, which are often present in large-scale compu-
tational models—for example, those of the primary visual
cortex. (We note that the spike-spike corrections in our meth-
ods are more involved than the correction of single neuron
spike-time via a polynomial interpolation as in the modified
Runge-Kutta methods commonly used in simulations of I&F
neuronal networks.) Our methods can evolve networks with
relatively strong local interactions in an asymptotically op-
timal way such that each neuron fires approximately once
in O(N ) operations, where N is the number of neurons in
the system. We note that quantifications used in computa-
tional modeling are often statistical, since measurements in
a real experiment to characterize physiological systems are
typically statistical, such as firing rate, interspike interval
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distributions, and spike-triggered voltage distributions. We
emphasize that it takes much less computational effort to re-
solve statistical properties of certain I&F neuronal networks
than to fully resolve trajectories of each and every neuron
within the system. For networks operating in realistic dynam-
ical regimes, such as strongly fluctuating, high-conductance
states, our methods are designed to achieve statistical ac-
curacy when very large time-steps are used. Moreover, our
methods can also achieve trajectory-wise accuracy when
small time-steps are used.

Keywords Numerical algorithm . Network architecture

1. Introduction

Systems of conductance-based integrate-and-fire (I&F) neu-
rons are often used to study the behavior of large neu-
ronal networks (Somers et al., 1995; Troyer et al., 1998;
McLaughlin et al., 2000), since they are far simpler to evolve
computationally than networks of other more complicated
point neuron models (such as Hodgkin-Huxley type (Koch,
1999)). However, in numerical simulations of I&F neuronal
networks, one theoretical point is often not sufficiently em-
phasized, namely, the architecture and dynamic regimes of
the simulated network, as well as the modelling goals, often
determine which numerical methods can be used effectively.
For example, if we wish to measure the mean steady state
firing rate of an all-to-all weakly coupled excitatory network,
driven by high rate excitatory Poisson input with weak in-
put synaptic strength (i.e., a mean-driven regime (Cai et al.,
2004), we can use most standard numerical schemes (e.g.,
explicit Euler method). This is because the equations of the
I&F neuronal network are not stiff in this dynamic regime,
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and the cortico-cortical interactions only weakly perturb the
dynamics.1 Any errors made in computing the spike-time or
trajectory (i.e., voltage and conductance time course) of an
individual neuron will barely affect the trajectories of the
other neurons in the network. On the other hand, for a neu-
ronal circuit with very specific wiring and strong connection
strengths, it may happen that subcomponents of this network
may have high conductances (i.e., the equations of the I&F
neuronal network may be stiff). And it is also possible that
slight changes in the initial conditions or tiny errors in the
spike-times may give rise to drastically different network
responses. If we want to numerically study the input-output
properties of these networks, care must be taken because
standard numerical methods may have difficulties in resolv-
ing the neuronal trajectories accurately in these cases.

In this paper, we focus on numerical methods for simulat-
ing physiologically plausible I&F neuronal networks arising
from modeling the primary visual cortex (V1) (McLaughlin
et al., 2000; Tao et al., 2003). These networks are some-
where in between the two extremes mentioned above. The
choice of I&F neurons (instead of more detailed neuronal
models) is dictated by the computational limit imposed by
the spatiotemporal scales of the dynamics associated with
physiological phenomena we are interested in, which often
span ∼10 mm2−100 mm2 with ∼105−106 neurons. The I&F
model point neuron is very idealized, therefore, a simulation
of I&F neuronal networks can (usually) only offer a statis-
tical understanding of a real physiological network, rather
than a detailed neuron-by-neuron account of that network
(Rauch et al., 2003; Fourcaud-Trocme et al., 2003; Geisler
et al., 2005). Hence, our goal is to obtain accurate statis-
tical properties of the simulated network—such as voltage
and spike-time distributions, rather than accurate individual
intracellular membrane potential time courses for each and
every neuron in the system over a long time.

One way to accurately simulate an I&F neuronal net-
work is to numerically evolve each individual point I&F
neuron, and obtain an accurate estimate of each neuronal
trajectory. In general, we cannot take large time-steps with
Runge-Kutta based methods if the I&F neuronal equations
are stiff. More precisely, if the exact solution of the I&F
neuronal equations over the desired numerical time-step is
not accurately approximated by a low (usually 2nd) order
polynomial, then the explicit Runge-Kutta schemes do not
perform well. This can happen if the conductances are high.
One immediate consequence is that the time-step is forced to
be relatively small in order to evolve a system with relative
strong cortico-cortical connection strengths. If the system is
large (i.e., a large number of neurons) and a long-time sim-

1 Note that we use cortico-cortical interaction to refer the interaction
between neurons in a model network, in contrast to the driving of the
external (i.e., feedforward) input to the model network.

ulation (say, seconds) is required, then the overall computa-
tional work can be large. In particular, we note that the real
cortex may often operate in a high conductance state (Borg-
Graham et al., 1996, 1998; Pare et al., 1998; Shadlen et al.,
1998; Destexhe et al., 2003; Rudolph and Destexhe, 2003a,
2003b, 2003c, 2003d). This makes the problem especially
acute in simulating realistic cortical dynamics. Incidentally,
we note that the commonly used numerical methods (Hansel
et al., 1998; Shelley and Tao, 2001), with the spike-time of a
single neuron trace within a single numerical time-step ap-
proximated by means of polynomial interpolation, are of the
explicit Runge-Kutta kind. Therefore, if the I&F neuronal
network equations are stiff, the same numerical issue would
arise to resolve the I&F dynamics when using these modi-
fied Runge-Kutta methods (Hansel et al., 1998; Shelley and
Tao, 2001). The modified Runge-Kutta methods take rela-
tively small time-steps (usually 0.02 ms or smaller, where
τ ≈ 2 ms usually is the shortest time-scale imbedded into the
I&F neuronal equations) in order to calculate each neuronal
trajectory accurately.

If we desire a numerical method for an I&F neuronal net-
work that can achieve statistical accuracy when using very
large time-steps, as well as trajectory-wise accuracy when
using small time-steps, then we need to address issues aris-
ing from large time-steps, such as time-steps comparable to
the conductance decay time-scale (say, ∼2 ms), in order to
achieve statistical accuracy. In particular, we need to take
into account the causality of spiking events within a sin-
gle time-step via spike-spike interactions.2 Usually, in the
modified Runge-Kutta methods, at the beginning of a time-
step, the state of the network at the end of the step is not
known, thus, only the spikes of the feedforward input to
the network within that time step can be used to attempt
to evolve the system. This first approximation may indicate
that, driven by the feedforward input spikes, many neurons in
the network fire. However, this conclusion may be incorrect
because the first few of these spikes induced within a large
time-step may substantially affect the rest of the network via
spike-spike interactions in such a way that the rest of the
spikes within the time-step are spurious—For example, this
happens when a large time-step is used in these methods to
evolve a network with strong recurrent inhibition. We note
that the modified Runge-Kutta methods do not take into ac-
count spike-spike interactions within a single large numerical
time-step. As a consequence, when used to evolve a system
with strong cortico-cortical coupling strengths, the modified
Runge-Kutta methods with interpolated spikes need to take
sufficiently small time-steps to have only a few spikes in the

2 That is, the first few approximate spikes within the interval (as deter-
mined via feedforward input) interact, via cortico-cortical couplings,
and affect the rest of the approximate spikes within the interval. We call
this process spike-spike interactions.
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entire system within a single time-step. Again, if the system
involves a large number of neurons, the computational cost
can become prohibitive.

Experimental data indicate that the V1 network archi-
tecture may include strong relatively nonspecific local re-
current connections (Fitzpatrick et al., 1985; Lund, 1987;
Callaway and Wiser, 1996; Callaway, 1998; Marino et al.,
2005) and modulating, orientation-specific, long-range con-
nections, while the dynamics of the system may stabilize
in a fluctuation-driven regime with moderate firing rate
(Anderson et al., 2000; Stern et al., 1997; Cai et al., 2004,
2005). Therefore, each V1 neuron is only strongly connected
to its nearby spatial neighbors within a local interaction spa-
tial scale. The effect of each spike in V1 is thus relatively
local, and each neuron in the system can fire once with only
O(N ) essential (strong) neuron-neuron interactions, where N
is the number of neurons in the system. In order to explicitly
take advantage of the specialized V1 cortical architecture,
we need to address related numerical issues. Usually, when
a general I&F neuronal solver is used for evolving each I&F
neuron in a large network, the effect of a neuronal spike on
each other neuron in the network is treated computationally
independently and equally. Thus, if each of the N neurons
in the system fires once, the number of computed neuron-
neuron interactions grows like O(N 2). This very general
computational structure does not reflect the V1 network ar-
chitecture. Therefore, for networks which span a relatively
large patch of cortical space with a V1-like architecture,
the standard methods are inefficient, spending a lot of work
resolving minuscule effects coming from distant neurons.

In this paper, we propose a numerical method which ad-
dresses the issues raised above, namely, issues related to (i)
stiffness in high-conductance states of neuronal networks,
(ii) causality of spiking events induced by spike-spike inter-
actions with a single large numerical time-step in order to
achieve statistical accuracy, and (iii) strong spatially local in-
teractions and modulating long-range interactions in V1-like
architectures. The basic ideas underlying our method are:

1. We choose an integrating factor, which takes advantage of
the neurophysiological fact that the membrane potential of
a neuron is nearly slaved to the effective reversal (slaving)
potential in a high conductance state, to allow us to write
the solution as a numerically tractable integral equation.
This enables us to stably and accurately evolve individual
neuronal trajectories, even when the I&F equations are
stiff (i.e., large time-steps can be taken even for high
conductance states).

2. We sort the approximated spike-times within each numer-
ical time-step and apply an iterated correction procedure
to account for the effects of each spike on all future spikes
within the numerical time-step. Thus, when applied to
networks of I&F neurons, our method can account for

the spike-spike interactions within a single large (1 ms–2
ms) numerical time-step. We emphasize that these spike-
spike corrections for a group of neurons should not be
confused with the correction of spike-time by polynomial
interpolation for a single neuron trajectory in the modified
Runge-Kutta methods (Hansel et al., 1998; Shelley and
Tao, 2001).

3. We sort the neurons into local clusters approximately as
large as the local interaction spatial scale, and consider
only O(N 0) nearby cortical neurons per spike (or equiva-
lently, each time-step is chosen such that it only involves
O(N 0) spikes affecting each neuron). This allows us to
evolve V1-like model networks (with N neurons and spa-
tially local interaction kernels) in an asymptotically opti-
mal way such that each neuron fires approximately once
in O (N1) operations.

In addition to achieving a trajectory-wise accuracy when
small time-steps are used in our method, one of the pri-
mary advantages of our method is that it can take very large
time-steps (even in a high conductance state, for instance),
typically 1–2 ms—close to the smallest time-scale in I&F
neuronal networks, while still obtaining a good statistically
quantitative picture of the V1-like model network behavior.
Specifically, statistical information about the network (fir-
ing rates, interspike interval distributions, conductance and
voltage distributions, spatiotemporal conductance or voltage
patterns) can be obtained much more easily and accurately
than with the standard modified Runge-Kutta methods. We
have implemented our method in a large-scale computational
model of a V1 patch (∼25 mm2 with ∼106 neurons) to
address spatiotemporal dynamics of V1 (Cai et al., 2005;
Rangan et al., 2005), such as coherent, spontaneous ongoing
spatiotemporal activity observed by in vivo imaging based
on voltage-sensitive dyes (Tsodyks et al., 1999; Kenet et al.,
2003; Grinvald and Heildesheim, 2004), and V1 spatiotem-
poral patterns of cortical activity under the line-motion il-
lusion stimulus paradigm (Jancke et al., 2004; Grinvald and
Heildesheim, 2004). Incidentally, we comment that, to model
these cortical spatiotemporal activities, purely event-driven
algorithms (for example, see Makino, 2003; Rochel and
Martinez, 2003; Lytton and Hines, 2005; Geisler, 2005) are
not suitable, since this type of modeling requires informa-
tion about continuous internal states described by neurons’
voltages and conductances. Event-driven algorithms usually
are restricted to very special classes of model neurons and
are interested mainly in spike dynamics (Morrison et al.,
2005). Generally, it is difficult to use event-driven algorithms
to simulate networks with relatively realistic physiological
features. Finally, we point out that the applicability of our
numerical methods is not limited to V1 modeling since the
issues that our methods address are quite general and our
methods can be easily extended to model other neuronal
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networks arising from computational neuroscience in
general.

The paper is organized as follows: In Section 2, a brief
description of the I&F equations is presented; In Section 3,
we describe how a single test neuron can be accurately
integrated within a larger network; In Section 4, we de-
scribe how to take into account the spike-spike interactions
among a group of neurons within a single time step. In
Section 5, we describe how to structure the algorithm to
take account of the local architecture present in large-scale
computational V1 models; Finally, in Section 6, we pro-
vide numerical examples which illustrate the power of our
method.

2. Integrate-and-fire neurons

For reference, we briefly describe the standard conductance-
based integrate-and-fire (I&F) point neuron (Koch, 1999).
Given a network of N I&F neurons with label i, each with
voltage Vi and conductances G Q

i , its dynamics is governed
by

d

dt
Vi (t) = −GL (Vi (t) − εL ) −

∑

Q

G Q
i (t)(Vi (t) − εQ)

(1a)

d

dt
G Q

i (t) = −G Q
i (t)

σ Q
+

∑

j

∑

k

SQ
i, jδ(t − Tj,k)

+
∑

k

F Q
i δ

(
t − T F

i,k

)
. (1b)

The voltage Vi (t) evolves continuously until it reaches a
threshold Vi (t) = εT . At this point in time the i th neuron
produces a spike (the kth spike of neuron i is recorded as
Ti,k), and the voltage Vi is reset to εR , and held there for an
absolute refractory period of τre f ms. Here, GL is the leak
conductance and εL is leakage potential. The index Q runs
over the types of conductances used. These conductances
are characterized by their different decay time scales σ Q and
reversal potentials εQ . Each spike from the i th neuron gives
rise to an instantaneous increase in the Q-type conductance
of neuron j of magnitude SQ

i, j . These coupling strengths SQ
i, j

can encode many different types of network architecture (e.g.
inhibitory and excitatory type neurons with sparse isotropic
local connections). The system is also driven by feedforward
input. The kth input spike from the feedforward input to the
i th neuron is denoted by T F

i,k , and instantaneously increases

that neuron’s Q-type conductance by magnitude F Q
i . Typical

parameters (in our reduced-dimensional units (McLaughlin
et al., 2000), in which only time retains dimension, with

units of conductance being [ms −1]) are: GL = 0.05, εL = 0,
εT = 1, εR = 0, τre f = 2 ms. Each neuron is either excita-
tory or inhibitory, as indicated by its type Li ∈ {E, I }. There
are two conductance types Q ∈ {E, I } also labelling excita-
tion and inhibition. The excitatory (inhibitory) conductance
G E (G I ) of any neuron is increased when that neuron re-
ceives a spike from another excitatory (inhibitory) neuron
within the network. This is achieved as follows: The coupling
strengths SE

i, j are zero whenever L j = I , and similarly SI
i, j

is zero whenever L j = E . The conductance time-scales are
σ E = 2 ms, σ I = 7 ms and the reversal potentials are εE =
14/3, ε I = −2/3. Note that the corresponding physiolog-
ical values are εE = 0 mV, ε I = −80 mV, εL = −70 mV,
εT = −55 mV and GL = 50 × 10−6�−1cm−2.

We note that, for clarity of presentation, we describe our
numerical method below for the case in which there is only
one time-scale σ Q associated with each type of conductance
as in Eq. (1b). However, our method can be readily extended
to the case, where, for example, the conductances are of
the form of an α-function with both rise and decay time-
scales.

3. Single ‘test’ neuron

As a first step towards a stable and accurate method for
general neuronal networks, we consider a special case of
Eq. (1). We assume that there are N + 1 neurons within a
network such that for a fixed i, SQ

j,i = 0,∀ j—that is, the i th
neuron does not connect to any of the other N neurons in
the system (i.e., a ‘test’ neuron within a network, which is
an analog of test particle, commonly used in physics). We
further assume that the behavior of the rest of the system
is given—every presynaptic spike Tj,k for j �= i and T F

i,k is
given as input to the computation. We discuss accuracy and
stability issues arising from numerical methods that approx-
imate the voltage, conductance and spike-times for the i th
neuron (the test neuron).

Note that Eq. (1) can be rewritten in terms of the total
conductance

GS
i (t) = GL +

∑

Q

G Q
i (t), (2)

and effective reversal potential

V S
i (t) = 1

GS
i (t)

[
GLεL +

∑

Q

G Q
i (t)εQ

]
, (3)

as

d

dt
Vi (t) = −GS

i (t)
[
Vi − V S

i (t)
]

(4a)
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d

dt
G Q

i (t) = − 1

σ Q
G Q

i (t) +
∑

j

∑

k

SQ
i, jδ(t − Tj,k)

+
∑

k

F Q
i δ

(
t − T F

i,k

)
. (4b)

Classical explicit Runge-Kutta and multistep methods have
finite domains of stability (Gear, 1971), and will have sta-
bility problems solving Eq. (4) if the conductances G Q

i are
high and the stepsize �t is large. Standard linearly stable
schemes like implicit Euler method tend to be of low order
accuracy when applied to smooth ODEs (Gear, 1971), and
may not be very accurate if �t is large. We propose a spe-
cialized scheme based on the analytical formula for the exact
solution of Eq. (4). This scheme can be easily and quickly ap-
plied with high accuracy and no stability constraints. Given
an initial time t0 and a later time t = t0 + �t, we may write
the solution Vi (t), G Q

i (t) as a function of the known input
spike-times Tj,k, T F

i,k :

G Q
i (t) = G Q

i (t0) exp

(
− t

σ Q

)
(5a)

+
∑

j �=i

∑

k|Tj,k≤t

SQ
i, j exp

(
− t − Tj,k

σ Q

)
(5b)

+
∑

k|T F
i,k≤t

F Q
i exp

(
− t − T F

i,k

σ Q

)
(5c)

Vi (t) = V S
i (t) + exp

(
−

∫ t

t0

GS
i (s)ds

)(
Vi (t0) − V S

i (t0)
)

(6a)

−
∫ t

t0

exp

(
−

∫ t

s
GS

i (r )dr

)
d

ds
V S

i (s)ds. (6b)

Note that the voltage representation of Eq. (6) takes
advantage of the fact that Vi (t) decays to V S

i (t) with
time-scale given by the value of GS

i , and is substantially dif-
ferent from the straightforward standard integrating factor
representation:

Vi (t) = Vi (t0) exp

(
−

∫ t

t0

GS
i (s)ds

)

+
∫ t

t0

exp

(
−

∫ t

s
GS

i (r )dr

)
GS

i (s)V S
i (s)ds. (7)

If the conductances are large, the quantity GS
i (s)V S

i (s) in the
integrand of Eq. (7) may change very rapidly over the course
of a large time-step, so that it may be difficult to evaluate the
integral numerically (quadrature requires that the integrand
be well approximated by a polynomial). On the other hand,

the integrand of Eq. (6) contains the term

d

dt
V S

i (t) = 1

GS
i (t)

[
1

GS
i (t)

(
GLεL +

∑

Q

G Q
i (t)εQ

)

×
(

∑

Q

G Q
i (t)

σ Q

)
−

∑

Q

G Q
i (t)

εQ

σ Q

]
, (8)

which is bounded and well behaved as the conductance val-
ues G Q

i (t0) → ∞. Thus, the integrand of Eq. (6) is well
approximated with a standard low (e.g., 2–3) order quadra-
ture scheme even when �t is large. The solution given by
Eq. (5) for G Q

i is valid for all time, but Eq. (6) for Vi (t) is
only valid as long as Vi (t) ≤ εT . That is, as long as the i th
neuron does not spike. If the i th neuron does spike at time
Ti,k (see below for how to determine Ti,k numerically), then
Vi (t) := εR throughout the interval Ti,k ≤ t ≤ Ti,k + τre f

and for times t after Ti,k + τre f up until the i th neuron
spikes again, say at time Ti,k+1, we must modify Eq. (6) to
read

Vi (t) = V S
i (t) + exp

(
−

∫ t

Ti,k+τre f

GS
i (s)ds

)

×(εR − V S
i (Ti,k + τre f )) (9a)

−
∫ t

Ti,k+τre f

exp

(
−

∫ t

s
GS

i (r )dr

)
d

ds
V S

i (s)ds. (9b)

Now we outline the numerical scheme we use to ap-
proximate solutions to Eqs. (5) and (6). First the in-
coming spikes are sorted into an increasing sequence of
spike-times. This allows us to use Eq. (5) to compute
the conductances G Q

i (t) exactly for all required times.
Then we use these conductance values to exactly com-
pute the quantities GS

i (t), V S
i (t), d

dt V S
i (t) using Eqs. (2), (3)

and (8), respectively; Since GS
i (t) is a sum of exponen-

tial functions,
∫ t

s GS
i (r )dr can also be computed exactly.

Next, using these computed values, we apply a quadra-
ture scheme to approximate the integrand in Eq. (6)—∫ t

t0
exp(− ∫ t

s GS
i (r )dr ) d

ds V S
i (s)ds—which, in turn, allows us

to approximate Vi (t). If our approximation to Vi crosses εT at
some time Ti,k < t0 + �t , we use polynomial interpolation
to determine the spike-time (Hansel et al., 1998; Shelley and
Tao, 2001), reset the voltage appropriately, and recompute
future values of Vi (t) using Eq. (9). In Appendix A, we detail
this numerical scheme—Algorithm 8.1.

This procedure (Algorithm 8.1) has nice properties: (i) If
the spike-times are exact, then the conductances are com-
puted exactly, regardless of the time-step; (ii) the conduc-
tances will always be positive (in contrast to those computed
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using a standard explicit Runge-Kutta scheme with too large
a time-step).

This method allows us to take very large time-steps while
maintaining accuracy. It requires O(K P) operations per
time-step, where P is the quadrature order used in Algo-
rithm 8.1. Clearly, one way to make this method faster and
suitable for larger systems is by limiting P (the quadrature
order), or K (the number of spikes considered in a time-step).

It is possible to incorporate other simple network mecha-
nisms into Algorithm 8.1. For example, synaptic depression
and spike frequency adaptation can be modeled by associat-
ing various dynamic relaxation variables with each neuron,
which control the neuron’s postsynaptic or presynaptic cou-
pling strengths. These dynamic variables exponentially relax
to a rest value and jump whenever the neuron spikes (or re-
ceives a spike). The equations for these parameters can be
evolved in a manner similar to Eq. (5). Synaptic failure can
be modeled by associating a Bernoulli random variable with
each cortical spike. Axonal delay times can be modeled by
associating with each presynaptic cortical spike from the
j th neuron T source

j,k := Tj,k a list of postsynaptic impinging

spike-times T target
i, j,k which record the times at which the orig-

inal spike reaches and affects the i th neuron (by incorpo-
rating the appropriate delays). These impinging spike-times
can then be sorted and corrected in a manner similar to the
treatment of the Tj,k above.

4. General coupling

Now we consider the general case of Eq. (1), where the in-
tercortical connection strengths SQ

i, j are in general nonzero.
We assume that all the feedforward input spike-times T F

i,k

∀i, k are given, but that the cortical spike-times are yet to
be determined.3 We describe a numerical method which ap-
proximates the conductances, voltages and spike-times of all
the neurons in the network, and allows us to collect accu-
rate statistical information with a low computational cost. A
particularly noteworthy feature of this method is that, with
relatively large time-steps, it still accurately evolves the net-
work.

One simple approach is to evolve the trajectories of each
neuron in the network from t0 to t0 + �t by using Algorithm
8.1, while only considering the feedforward spikes within
the time interval [t0, t0 + �t], and applying the effects of
the cortical spikes within the time-interval [t0, t0 + �t] at
the end of the step. As mentioned in the Introduction, this
naive approach will work well for certain systems, such as
an all-to-all mean-driven weakly coupled excitatory network,

3 Note that we use cortical spikes to refer to the spikes from the neurons
in a model network, in contrast to the spikes from the feedforward input.

since the contribution of each spike to the overall conduc-
tance of this system is negligible, and the errors introduced
at each step do not substantially alter the network dynamics.
However, this naive approach may fail disastrously when
applied to a strongly recurrent system. For example, if we
use this simple method with large time-steps (�t ≈ σ I )
to evolve a very strongly inhibitory all-to-all autapse-free
(SQ

i,i := 0 ∀ i) network, driven by excitatory feedforward in-
put, we will likely surmise that the inhibitory neurons fire in
clustered groups. This conclusion arises because the naive
method ignores the cortical spike-spike interactions. One
large time-step allows for the excitatory feedforward input
to initiate many neuronal spikes, but the simple scheme does
not take into account the fact that the first among these spikes
may influence the trajectories of the other spiking neurons
in the network. A more accurate method may reveal such a
scenario, e.g., the first inhibitory neuron to fire may suppress
all other network activity, and thus this single neuron may
continue to fire alone, driven by the feedforward input.

We briefly outline a variation of Algorithm 8.1 which ac-
counts for spike-spike interactions, and can accurately evolve
recurrent networks governed by Eq. (1). (A detailed descrip-
tion of this numerical scheme is also included as part of
Algorithm 5.1.)

Algorithm 4.1

1. Given initial values Vi (t), G Q
i (t) and feedforward input

spike-times T F
i,k for all i, we can apply Algorithm 8.1

with a quadrature order of 1 or 2 and time-step �t to
obtain an estimate of neuronal trajectories on the interval
[t0, t0 + �t].

2. We use this rough estimate to classify the neurons into
two groups Aspike,Aquiet—those that are estimated to fire
within [t0, t0 + �t] and those that are not.

3. We sort the approximate spike-times of neurons within
Aspike into a list T with associated coupling strengths S.

4. We use the feedforward spikes T F
i,k as well as the approxi-

mate spike-times T and Algorithm 8.1 with a quadrature
of higher order P, (e.g., P = 3, 4), and the same time-
step �t to correct the neuronal trajectories of the subnet-
work Aspike over the interval [t0, t0 + �t], and obtain a
more accurate approximation to the spike-times T . This
spike-spike correction procedure is equivalent to step-
ping through the list T and computing the effect of each
spike on all future spikes. We step through this correction
process until the neuronal trajectories and spike-time of
neurons in Aspike converge. (see Appendix B for further
details.)

5. Finally we use the corrected estimates of the spike-times
T as well as the feedforward spikes T F

i,k and Algorithm 8.1
with high quadrature order P and time-step �t to evolve
the remainder of the neurons Aquiet from t0 to t0 + �t .
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This procedure works well most of the time, but it fails
if the final evolution step using the corrected spike-times T
causes a neuron from group Aquiet to fire. If this is the case,
we redefine the listAspike to include this extra neuron, and go
back to step 3 and re-correct the spike-times T starting with
the recently discovered spike. Obviously, a missed spike is
costly, and slows down the computation. In order to mini-
mize the frequency of these events, it is best to originally
define Aspike (within step 2) to include not only the neurons
which are estimated to spike due to the feedforward inputs,
but also those neurons that have voltage trajectories or effec-
tive reversal potentials V S (t) ‘close’ to εT . The exact criteria
of ‘closeness’ used in the algorithm may depend on the net-
work being modeled as well as the dynamical regime. One
method of defining Aspike is the ‘one away’ approach: After
using the known feedforward spikes to determine approx-
imate neuronal trajectories, we classify a neuron as ‘close
to spiking’ if a single extra nearby excitatory cortical spike
at the start of the time-step would cause the neuron’s ef-
fective reversal potential V S (t) to cross threshold. Another
method of defining Aspike is the ‘m away’ approach: A neu-
ron is deemed to be ‘close to spiking’ if the feedforward
input combined with the expected cortico-cortical excitatory
conductance contribution (calculated using the the average
excitatory firing rate m from the previous time-step) brings
the effective reversal potential V S (t) of that neuron over
threshold. A combination of these two approaches (detailed
later in step 7 of Algorithm 5.1) is shown to work well for the
V1 networks studied in the following sections. In practice,
this combined procedure only misses about 0.1%–1% of the
spiking neurons.

The procedure above also slows down if the set Aspike is
very large. A simple strategy to overcome this is to adaptively
choose �t so that there are a manageable number of spikes
within each time-step.

5. Arbored coupling

We consider a special case of Eq. (1) which is applicable
to models of V1 (Somers et al., 1995; Troyer et al., 1998;
McLaughlin et al., 2000; Cai et al., 2005; Rangan et al.,
2005), as well as many other cortical areas. For ease of
discussion, we make the following assumptions, many of
which can later be relaxed:

1. The neurons in the system are spatially organized on
a two-dimensional lattice. The spatial density of lattice
points is 1 lattice point per unit area. The position of the
i th neuron is given by its integer cortical coordinates xi .

2. There are two types of conductances Q ∈ {E, I }, corre-
sponding to excitation and inhibition. Each neuron in the
system has a type L = {E, I } labelling either excitatory

or inhibitory. A spike from an excitatory (inhibitory) neu-
ron only increases the excitatory (inhibitory) conductance
of its postsynaptic neurons. These two types of neurons
are uniformly randomly distributed with density ρE , ρ I

respectively.
3. The neurons are isotropically randomly connected

to other nearby neurons, with interaction strengths
SQ

i, j = δQ,L j �i, j S̄Q
Li

K Q(|xi − x j |). The Kronecker δQ,L j

reflects that a spiking neuron can only increase the con-
ductance associated with its type. The random connectiv-
ity matrix �i, j indicates whether neuron j is connected
to neuron i. The diagonals �i,i are all zero, and the per-
centage of nonzero entries (sparsity coefficient) is �̄. The
maximum strength S̄Q

Li
only depends on the type of con-

ductance and the type of the postsynaptic neuron. The
normalized spatial kernel K Q(r) decays faster than 1/r2

(in three dimensions we would require the decay to be
faster than 1/r3). A commonly used kernel is the Gaus-
sian spatial kernel K Q(r) = K̄ Q exp(−r2/(DQ)2), which
decays with spatial scale DQ .

We denote the average Q-type conductance of the L-type
neurons within the system by Ḡ Q

L , and the average instanta-
neous firing rate of the L-type neurons by mL.

Given the initial conditions Vi (0), G Q
i (0) and feedforward

input spikes T F
i,k to the system, we want to approximate the in-

dividual neuronal trajectories and obtain accurate statistical
information about neuronal ensembles. The method we pro-
pose performs very well when the network is in a fluctuation-
driven, high conductance regime with low to moderate firing
rate (Cai et al., 2004, 2005), and can resolve statistical fea-
tures of the network behavior much more easily than standard
numerical methods.

The basic idea behind our method is to divide the neurons
into local groups (arbors) with diameter roughly equal to the
largest interaction length scale DQ . We adaptively choose
the time-step �t so that an initial estimate of neuronal tra-
jectories (using only the feedforward spikes) predicts only a
few neurons in each arbor with the potential to fire during
the time-step �t . We group the potential firing events into
local clusters such that the firing events in each cluster are
spatially well separated from those in other clusters. Then
we focus only on the strong close range connections and
correct our estimates for the spike times within each cluster.
We use these locally corrected spike-times as well as the
feedforward spikes to evolve the non-spiking neurons within
each cluster. Finally, we account for the weak long distance
connections by tracking the average firing rate of each arbor
and updating the conductances of non-adjacent arbors with a
low order (mean firing rate) method (see Fig. 1). We note in
passing that similar ideas have been explored in molecular
dynamics simulations—weaker or slowly changing far field
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A B C

D E F

G H I
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Fig. 1 Illustration of Algorithm 5.1. (A) First, space is divided into
local regions (arbors), each of a fixed diameter D. D is specifically cho-
sen such that the expected conductance contribution to any arbor from
spikes occurring within non-adjacent arbors is small. Here the large
square represents a region of cortex, and the smaller squares represent
arbors of diameter D. (B) In a single time-step from T0 to T0 + �t ,
the information of the feedforward input spike-times T F

i,k is used to
estimate (predict) which neurons are likely to fire within the present
time-interval. Here, the neurons at locations marked by “�” are classi-
fied as ‘close to spiking’ within the time-interval [T0, T0 + �t]. (C) The
neurons that are ‘close to spiking’ are grouped into local clusters. Each
local cluster contains potentially firing neurons which are spatially suf-
ficiently close to one another that they might strongly influence each
others’ trajectories within the time-interval [T0, T0 + �t]. Here each
black bordered region corresponds to a different cluster of potentially
spiking neurons. Note that, as illustrated here, one cluster has 7 poten-
tially spiking neurons. Suppose that 7 is higher than the upper cluster
limit L, say 5. Therefore, the seven-neuron-cluster contains too many
potentially interacting spiking neurons for us to consider. (D) If there
are too many potentially interacting spiking neurons, the computation
is restarted from the initial time T0 and a smaller time-step �̃t = �t/2
is taken. With this smaller time-step, the estimate of which neurons are
likely to fire within the (smaller) time-interval

[
T0, T0 + �̃t

]
is again

performed using only feedforward spikes. These potentially firing neu-
rons are grouped into clusters. This iteration proceeds until there are not
many neurons in each cluster (For example, the largest cluster in Panel
D has 3 neurons, which is smaller than the aforementioned threshold L).
(E) Now we restrict our attention to each cluster of potentially spiking
neurons, and ignore all the other neurons within each arbor that are not
‘close to spiking’. Here the thinly bordered regions indicate the spatially

well separated (non-interacting) groups of potentially spiking neurons.
(F) In turn, for each cluster of potentially spiking neurons, the estimated
spike-times within the time-interval

[
T0, T0 + �̃t

]
are corrected by us-

ing a high-order scheme. These spike-spike corrections may reveal that
some of the neurons originally estimated to fire during the time-interval[
T0, T0 + �̃t

]
actually do not spike within this interval (as indicated by

‘ × ’) while other potentially firing neurons do still fire within the inter-
val, albeit with slightly different spike-times (as indicated by ‘•’). We
emphasize that this spike-spike correction procedure provides a much
more accurate picture of spiking activity Tj,k within the time-interval[
T0, T0 + �̃t

]
than the original set of spike-times computed using only

the feedforward input spike-times T F
i,k . (G) Once accurate estimates of

all the neuronal spike-times Tj,k within the time-interval
[
T0, T0 + �̃t

]

are obtained, the trajectories of the non-spiking neurons within an ar-
bor (indicated by the dark grey region) can be accurately evolved by
taking into account the spiking neurons located in the adjacent arbors
(indicated by the light grey region) as well as the feedforward input.
(H) For each arbor in turn, all the non-spiking neurons are updated.
Here the dark gray region indicates the arbor of non-spiking neurons
that are being updated, and the light grey region indicates the cortical
spikes which can strongly affect those neurons. (I) Finally, after all the
non-spiking neurons in the network are updated, the far field conduc-
tance contribution to each neuron can be approximated using the mean
firing rate within each non-adjacent arbor (the conductance contribu-
tion from adjacent arbors has already been considered since the nearby
spiking neurons in steps G–H are specifically accounted for). Here the
dark grey region indicates the arbor that is being updated, and the light
gray regions indicates the (other) arbors (not adjacent to the dark grey
region) which are accounted for with mean firing rates and average
connectivity strengths.
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effects are treated differently from stronger quickly changing
local effects (Frenkel and Smit, 1996).

What follows is a detailed description (See Fig. 1):

Algorithm 5.1. Arbored Coupling Method

1. Input: an initial time t0, a maximum time-step �tmax,
an upper limit L on the number of interacting spikes we
wish to consider, and quadrature order P. Typical values
are �tmax ≈ τre f or �tmax ≈ maxQ σ Q, L ≈ 20, P = 2

2. Set �t := �tmax.
3. Use the estimates of average conductance and fir-

ing rate Ḡ Q
L , mL to define an arbor diameter D

such that, on average, the spikes outside of a neu-
ron’s local arbor do not affect its conductance very
much. This can be accomplished by choosing D such
that �tm QρQ�̄S̄Q

L
∫ ∫

Bc K Q(r)dr ≤ �t P
maxḠ Q

L for all
Q,L, where the area Bc is defined as the comple-
ment to the square of side length D centered at the
origin. Let N ′ = D2 denote the number of neurons
within B (a square of side length D centered at the
origin).

4. Partition the lattice of neurons into M = �N/N ′� local
square arbors A1,A2, . . . ,AM each of diameter D. (We
abuse the notation Al to refer to both a square in space
as well as the list of neurons within that square).

5. With a time-step of �t , use Algorithm 8.1 with only the
feedforward spikes T F

i,k and a low order quadrature to
obtain a rough estimate of neuronal trajectories within
each arbor on the interval [t0, t0 + �t]. (This step takes
O(N ) operations).

6. Estimate the firing rate mL
1 , . . . , mL

M of the neurons
within each arbor by tallying the total number of pre-
dicted spikes over the time-step �t , or by using the firing
rates from the previous step. (This step takes O(N ) op-
erations).

7. Given the approximate neuronal trajectories and ap-
proximate firing rates, sort the neurons in each arbor
Al into two lists: Aspike

l and Aquiet
l . Neurons that have

an approximate trajectory that crosses or comes close to
εT are put in list Aspike

l , and the other neurons are put
into list Aquiet

l . A neuron (say, with index j) in arbor Al

is classified as ‘close to’ εT if, on average, the local ex-
citatory firing rate estimate m E

l within that arbor could
be expected to drive that neuron to fire. More precisely,
if an addition of max(1, m E

l �tρE�̄)S̄E
L j

∫ ∫
B K E (r)dr

to the conductance G E
j causes the effective reversal po-

tential V S
j to cross εT , then the j th neuron is likely to

fire during the time-step �t . (This a combination of the
‘one spike away’ and ‘m spikes away’ scenarios). The
list Aspike

l (Aquiet
l ) contains the potentially spiking (non-

spiking) neurons within the spatial arbor Al . (This step
takes O(N ) operations).

8. Define the clusters Āspike
l as the set of potentially spik-

ing neurons within arbor Al . Originally this cluster is
simply Āspike

l := Aspike
l , but we will later concatenate

the Āspike
l so that they hold disjoint groups of possibly

interacting potentially spiking neurons. We define two
clusters Āspike

l , Āspike
l ′ as spatially adjacent if there ex-

ist neurons ni ∈ Āspike
l and ni ′ ∈ Āspike

l ′ that belong to
arbors Ak  ni , Ak ′  ni ′ respectively such that Ak and
Ak ′ are adjacent in cortical space.

9. Run through all spatially adjacent pairs of clusters
Āspike

l , Āspike
l ′ . If two adjacent clusters contain neurons

that are within D of one another, concatenate them into
one cluster. (This step takes O(N + L M log M) opera-
tions in the absolute worst case, but in our experience
this step only takes O(N ) operations).

10. If any cluster Āspike
l has more than L neurons, there are

too many spikes which might possibly interact. Halve
�t and go back to step 5. Otherwise continue.

11. Construct lists T̄l corresponding to the approximate
spike-times of the neurons within each cluster Āspike

l .
12. Use Algorithm 8.1 with the feedforward spikes T F

i,k as
well as the (less than L) spike-times T̄l and quadrature
order P to correct the neuronal trajectories for each
cluster Āspike

l over the time interval [t0, t0 + �t]. Up-
date the lists T̄l , and repeat this correction step until
the approximate trajectories and spike-times converge
(this typically takes 2–3 iterations). (If we limit our-
selves to a fixed number of iterations, this step takes
O(M L2 P) operations). (see Appendix B for further
details.)

13. Construct lists Tl corresponding to the accurate spike-
times of neurons within each arbor Al . (This step takes
O(M L) operations).

14. For each arbor Al , in addition to the feedforward spikes,
consider also the spikes Tl within that arbor as well
as the spikes Tl ′ corresponding to adjacent arbors,
and use Algorithm 8.1 to accurately evolve the non-
spiking neurons in each cluster Aquiet

l . (There are only
9 adjacent arbors associated with each cluster Aquiet

l ,
and thus, maximally, only 9L cortical spikes can affect
neurons within Al . Therefore this step takes O(NLP)
operations).

15. If a neuron originally classified into one of the Aquiet
l

spikes over the interval [t0, t0 + �t], add this neuron to
the appropriate list Āspike

l and go back to step 9. If the
total number of neurons within the Aquiet

l which fire over
the time interval is comparable to the total number of
neurons within the Āspike

l , halve �t and go back to step
5.

16. Calculate the average conductances Ḡ Q
L and firing rates

mL of the system, as well as the firing rates mL
l of each

arbor Al . (This step takes O(N ) operations).
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17. Use a mean rate method to account for the effect of
distant spikes. This can be accomplished by adding∑̃

l�tm Q
l ρQ�̄S̄Q

L
∫ ∫

Al
K Q(r − x̄l ′ )d�r to the Q-type

conductance of each L-type neuron within arbor Al ′ .
Here the point xl ′ refers to the center of arbor Al ′ , and
the sum

∑̃
l is over all arbors Al not adjacent to Al ′ .

Note that due to the construction of D in step 3, this
mean rate update should generally produce a relative
error of O(�t P

max) in the conductance trajectories. (This
can be done with only O(N ) operations by using the fast
fourier transform).

18. Go back to step 2.

We note that in practice, each step of Algorithm 5.1 re-
quires O(NLP) work and calculates O(L N/D2

max) spike-
times, where Dmax is the maximum arbor diameter allowed.
If the network fires roughly uniformly, we can compute
O(N ) spikes in O(D2

max/L) steps, which requires a total
of O(NPD2

max) operations. This procedure is much faster
than the O(N 3) operations required if we were to explicitly
consider the O(N ) far field interactions associated with each
spike.

We also note that this method is rather flexible, and can
easily be generalized to accommodate different types of net-
work architecture. For example, different types of interac-
tion kernels (with radial decay no slower than exponential
or 1/rn , with n > 2) can be considered. Other neuronal sub-
populations can be added, each with their own associated set
of interaction strengths.

As experimental observations suggest (Gilbert and
Wiesel, 1983; Bosking et al., 1997; Sincich and Blasdel,
2001; Angelucci et al., 2002), regions of V1 which share sim-
ilar orientation preference (to visual input) but are spatially
separated by ≈ 1 mm share no isotropic local connections,
but are weakly coupled via long range lateral (LR) connec-
tions. One practical application of Algorithm 5.1 involves ad-
justing the cortical architecture to include these LR connec-
tions. For example, we can assume that our network has local
connections as given above (in assumption 3) and LR connec-
tions given by SL R,Q

i, j = δQ,L j S̄
L R,Q
Li

K L R,Q(|xi − x j |), with

maximum coupling strengths S̄L R,Q
Li

and long range coupling
kernels K L R,Q . There is no need to consider the LR spike-
spike interactions if, for example, the long range coupling
strengths are small relative to the local cortical strengths,
and the number of LR connections per neuron is large.
In such a scenario it is reasonable to account for the LR
connections by using the mean firing rate within each ar-
bor (or small cortical region) to update the conductances
of the other arbors within the network. This LR correc-
tion can be taken into account at the same time as the
low order mean rate correction in step 16 of Algorithm
5.1.

We remark that the spatial divide-and-conquer strategy
implemented in Algorithm 5.1 can be structured to take
advantage of multiple processors. More precisely, Steps 5
through 16 of Algorithm 5.1 all involve multiple tasks which
each require local information (i.e., estimates of the neu-
ronal trajectories within a few arbors of the entire system),
and thus can be computed in parallel. However, in our imple-
mentation of this algorithm we only use a single processor,
which already allows us to simulate model networks of 105−6

neurons for realistic modeling purposes (see Section 6.4 for
details).

6. Numerical results

6.1. Test neuron

We construct a numerical experiment to emphasize the
stability and accuracy of Algorithm 8.1. As stated earlier,
modified Runge-Kutta methods may work well for mean-
driven networks with weak cortical coupling strengths.
These same Runge-Kutta methods will fail due to stability
constraints if the network is in a fluctuation-driven regime
with high conductance states, giving rise to stiff I&F
neuronal equations. To emphasize the practicable nature of
our algorithm and contrast it with the modified Runge-Kutta
schemes, we will consider a single test neuron system,
with SE

i, j , i �= j, given by a constant SE when neuron j
is excitatory, and with SI

i, j , i �= j, given by constant SI

when neuron j is inhibitory. We use strong cortical strengths
SE ≈ 1–10, SI ≈ 10–40 and a fixed input spike train
sampled from a Poisson process with rate ≈500 spikes/s.
This system operates in a fluctuation-driven regime (Cai
et al., 2004, 2005) with its neurons firing at a moderate rate
(≈ 50 spikes/s). The typical conductances of the neuron
are sufficiently high (GS ≈ 10–50) that the time-scale

1
GS � σ Q , therefore, the I&F neuronal equations are stiff.
We approximate the exact solution by using a variety
of numerical methods (Algorithm 8.1, modified explicit
Runge-Kutta, modified implicit Euler methods) with a
time-step �t ≈ 2−16 ≈ 1.5 × 10−5ms that is sufficiently
small that all of these solutions produce the same convergent
answer. We take these convergent solutions as a representa-
tion of the exact solution—voltage trajectory V exact (t) and
number of spikes K exact over a 1024 ms time interval. We
compare this exact solution with the trajectories V �t (t) and
total number of spikes K �t calculated using Algorithm 8.1
with fixed quadrature order p = 2 and larger time-steps
�t ≈ 2−3 → 22 (0.125 ms → 4 ms). We measure:

1. The relative average error in the voltage

Ē V =
(

1

tF − t0

∫ tF

t0

∣∣V exact (t) − V �t (t)
∣∣ dt

) /
V̄ , (10)
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2. The relative error in the average voltage

E V̄ =
∣∣∣∣

1

tF − t0

∫ tF

t0

V exact (t)dt

− 1

tF − t0

∫ tF

t0

V �t (t)dt

∣∣∣∣

/
V̄ , (11)

3. The relative error in the total number of firing events

E K = (K exact − K �t )/K exact . (12)

As seen in Fig. 2, the relative errors Ē V and E V̄ obtained
using Algorithm 8.1 are both small, even for large time-steps
(for example, �t ≈ 1 ms for two digit accuracy). When the
time-step is sufficiently small (�t ≈ 0.25 ms), Algorithm
8.1 correctly calculates K. However, due to the stiffness of
the equation, the spikes are not all exactly at the right times,
namely, there are O(�t) errors in spike-time. Therefore, Ē V

and E V̄ are both O(�t). The errors of Algorithm 8.1 are
compared with the errors obtained using modified implicit
Euler and modified Runge-Kutta methods of order 2 and 4
with large time-steps. As expected, implicit Euler method
is stable, but not very accurate. The modified Runge-Kutta
methods suffer from stability constraints, and are useless for
large time-steps (�t ≥ 2−3 ≈ 0.125 ms). These methods
perform well for sufficiently small time-steps (�t ≤ 2−4 ≈
0.06 ms), but require 16 to 32 times as many steps to achieve

�Fig. 2 Accuracy of Algorithm 8.1. Error graphs for the single test
neuron solver Algorithm 8.1 (with 2nd order quadrature) when tested on
a single test neuron with feedforward input spike drawn from a Poisson
process with rate ≈ 500 spikes/s, and input strengths SE ≈ 1 − 10,
SI ≈ 10 − 40. The same scale is used for all three sets of axes. The
data points (on the vertical axis) at ±∞ indicate no error or infinite
error, respectively. The thick black line corresponds to errors generated
by Algorithm 8.1 (for various time-steps, as indicated in the horizontal
axis). The ‘�’,‘ × ’ and ‘�’ correspond to errors generated by the
modified implicit Euler method, the modified Runge-Kutta method of
order 2 and the modified Runge-Kutta method of order 4 respectively.
(A) The relative average error in the voltage trace of the test neuron (Eq.
(10). Note that Algorithm 8.1 achieves 2 digit accuracy for large time-
steps (�t ≈ 1 ms), whereas implicit Euler achieves 2 digit accuracy
only for small time-steps (�t ≈ 0.125 ms), and the modified Runge-
Kutta methods can achieve this only with very small time-steps (�t ≤
0.06 ms). (B) The relative error in the average voltage (Eq. (11)) of
the test neuron over a 1024 ms period. Note that again Algorithm 8.1
outperforms the implicit Euler method, and the modified Runge-Kutta
methods can achieve the same accuracy only with very small time-
steps. (C) The relative error in the firing rate (the total number of spikes
of the test neuron over a 1024 ms period) (Eq. (12)). Algorithm 8.1
calculates the correct number of firing events for a somewhat large
time-step (�t ≈ 0.25 ms), whereas the other methods need a smaller
time-step to obtain the same accuracy in firing rate (�t ≈ 0.03 ms
for Runge-Kutta of order 2, and �t ≈ 0.008 ms for the implicit Euler
Method)

the same accuracy as Algorithm 8.1 with the appropriate
quadrature order p = 2, 4.

In summary, Algorithm 8.1 is practicable, and performs
well for test neurons within a wide range of networks.
This method is free to choose relatively large timesteps
(�t ≈ 0.1 − 1 ms) without restrictions due to stability, there-
fore, it can achieve a relative good statistical result when large
time-steps are used. We emphasize that in addition to statisti-
cal convergence using large time-steps, the method can also
achieve trajectory-wise accuracy when small time-steps are
used.
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6.2. All-to-all coupling

Now we demonstrate the accuracy of Algorithm 4.1 by ap-
plying it to a small (≈ 100 neurons) all-to-all coupled test
network with physiologically plausible parameters. In par-
ticular, we point out that the spike-spike corrections (step 4
in Algorithm 4.1 or step 12 in Algorithm 5.1) can be crucial
to accurately capturing the dynamics arising from cortico-
cortical coupling within such a network. The network we
consider has moderately strong uniform cortico-cortical in-
hibition SI ≈ 15 and moderately weak excitation SE ≈ 1.5.
We drive the excitatory neurons in the system with excitatory
feedforward input spikes, sampled from a Poisson process
with sinusoidal input rate proportional to sin(2π t/10 ms).
We use Algorithm 4.1 with a sufficiently small time-step
(�t ≤ 2−16 ≈ 1.5 × 10−5ms) to obtain a convergent solu-
tion, which we then take as a representation of the ex-
act solution. Computed sample trajectories are displayed in
Fig. 3.

0

10 20 30 40 6050

0.5

no spike-spike corrections
spike-spike corrections
exact solution

time(ms)

m
ea

n 
vo

lta
ge

Sample Trajectories

1

2

1.5

0.5

0

-lo
g1

0(
%

er
ro

r)

mean relative error 
      in voltage

0 10.5

Fig. 3 Importance of spike-spike corrections for evolution of networks.
Displayed are sample trajectories and error graphs for the general net-
work solver (Algorithm 4.1 with and without spike-spike corrections)
when tested on a small all-to-all connected network of ∼25 inhibitory
neurons and ∼75 excitatory neurons (SI ≈ 15, and SE ≈ 1.5). Neurons
within this network are driven by input spike-trains which are indepen-
dent realizations of a Poisson process with sinusoidally varying rate
proportional to sin (2π t/10 ms), (the input is turned on at 0 ms). The
average voltage trajectories of the system over a 64 ms interval after
stimulus onset are displayed. The thin black line corresponds to the
exact solution (as approximated with very small time-step), the thick
black line corresponds to the voltage computed with a large time-step
(�t = 1 ms) by using Algorithm 4.1 (by default, with spike-spike cor-
rections), and the dashed line corresponds to the voltage computed
(for the same large time-step �t = 1 ms) by using Algorithm 4.1 ex-
cept without spike-spike corrections. Note that, without spike-spike
corrections, the general network solver does not accurately resolve
the network dynamics. Inset: Average error in voltage for the system
for various time-steps. Clearly, the general network solver computes a
more accurate set of voltage trajectories with spike-spike corrections
than without

This system exhibits behavior which is strongly dependent
on the sequence of cortical spikes. The upstroke of the first
period of feedforward excitatory input causes a surge of ex-
citatory spikes, which drives a few inhibitory neurons to fire,
which then strongly suppress the response of the rest of the
system. The time-scale of the inhibitory conductance σ I ≈ 7
ms is not much shorter than the the period of the sinusoidal
input (10 ms), and thus the system is still somewhat inhib-
ited by the time when the second upstroke of input arrives.
Therefore, the second (and subsequent) input upstrokes need
only trigger a few excitatory spikes (which, in turn, trigger
a few inhibitory spikes) before the response of the system is
quickly suppressed again. Clearly, the cortical interactions
are critically important to the dynamics of the system. For
example, if there were a 5 ms axonal delay between the time
of each spike and its effect on its postsynaptic neurons, the
dynamics of the system could change drastically, since the
inhibitory neurons could no longer prevent proximal exci-
tatory spikes. The spike-spike corrections in Algorithm 4.1
allows us to address these situations with large time-steps
(with or without delays)(Morrison et al., 2005).

We use Algorithm 4.1 with large fixed time-steps �t ≈
2−3 → 20 (0.125 ms−1 ms) to simulate this system. The
error of computation is quantified by the relative average
error in the voltage

∑
i |V exact

i − V �t
i |/N V̄ , where N is the

number of neurons in the system (see the inset in Fig. 3).
Even for large time-steps (�t = 1 ms), Algorithm 4.1 (by
default, with spike-spike corrections) accurately evolves the
system as the voltage trajectories for the system closely fol-
low the exact solution. These accurate solutions capture the
essential behavior of the network: each input upstroke trig-
gers a few excitatory spikes which recruit a few inhibitory
neurons, thus suppressing the rest of the neurons. We com-
pare this method with a simpler, naive method that does not
perform spike-spike corrections (i.e., Algorithm 4.1 with-
out spike-spike corrections in step 4). As shown in Fig. 3,
this naive method is not accurate, even for small time-steps
(�t ≈ 2−3 ≈ 0.125 ms), and the voltage trajectories for the
system differ significantly from the exact solution. Since this
naive method never corrects the spike-times due to cortico-
cortical interaction within a time-interval, it overestimates,
by a significant amount, the number of firing events that take
place within a single time-step during an input upstroke.
This results in incorrect voltage trajectories which are far
more oscillatory than the actual network (see Fig. 3). This
naive method is only accurate when it uses a time-step that is
sufficiently small that spike-spike corrections are no longer
required within a single time-step to accurately resolve the
dynamics. In other words, the naive method can only evolve
the system accurately if there are only 1–2 estimated spikes
in the entire system per time step. Even though the firing rate
for individual neurons within this system is ∼60 spikes/s,
the individual neuron peak firing rates are ∼200 spikes/s.
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In addition, the firing events within the system are highly
synchronized, and often occur within 10−1ms of one an-
other. As a result, in order for the naive method to accurately
evolve this test network, the time-step needs to be very small,
namely �t ≤ 2−7 ≈ 8 × 10−3 ms.

We emphasize that for this particular system, the error in
the naive algorithm does not arise from the stability problem
(e.g., stiffness due to high conductance). If we replace the in-
dividual neuron solver, Algorithm 8.1, in Algorithm 4.1 with
either the modified Runge-Kutta method or the modified im-
plicit Euler method, we obtain similar results, that is, without
spike-spike corrections very small time-steps are required to
resolve the dynamics. Regardless of the order or stability
of a method for the single test neuron case, if the method
does not take into account the spike-spike interactions, it
will suffer in accuracy when applied to a strongly interacting
network, unless the time-step is prohibitively small. As is
demonstrated above, with a numerical method that accounts
for the spike-spike corrections, one can take relatively large
time-steps while still obtaining an accurate answer.

We reiterate that not every system requires these consid-
erations, and significantly simpler networks (with, say, only
weak excitatory coupling) can easily be investigated using
standard methods. However, Algorithm 4.1 is highly advan-
tageous for examining systems with strong cortical coupling
strengths.

6.3. Arbored coupling

To test the efficiency of Algorithm 5.1, we construct the fol-
lowing test network to mimic real physiological architecture
in V1.4 We construct a square lattice of 64 × 64 neurons, each
with integer lattice position xi and randomly assigned type
T = E, I , corresponding to excitation or inhibition (75%
excitatory and 25% inhibitory). In the network, there are
three types of conductances, Q ∈ {AMPA,NMDA,GABA}.
Both AMPA and NMDA conductances are associated with
spikes of excitatory neurons, and have reversal potentials
εAMPA = εNMDA = 14/3 and decay constants σ AMPA = 2 ms,
σ NMDA = 80 ms respectively (Wang, 1999; Compte et al.,
2003). Inhibitory conductance mediated by GABA is asso-
ciated with spikes of inhibitory neurons, and has the reversal
potential εGABA = −2/3 and decay constant σ GABA = 7 ms.
Each neuron is coupled to its lattice neighbors with interac-
tion strength SQ

i, j = SQ K Q(‖xi − x j‖). The three constants
SQ indicate the maximum connection strengths. The normal-
ized Gaussian spatial kernel K Q only depends on the distance

4 Here, the test network is designed only for the purpose of illustrating
essential computational elements involved in the primary visual cortex
modeling. We have implemented our numerical method in more physi-
ologically realistic computational models of primary visual cortex (see
Refs. Cai et al., 2005; Rangan et al., 2005 for details).

Fig. 4 Inputs to arbored test system. Snapshot of drifting grating
input and obscured grating input to the test network described in Fig. 5.
(A) The large box shown corresponds to the 64 × 64 neuron system
and the small white bordered region corresponds to the 16 × 16 subset
of neurons recorded. The intensity at each square corresponds to the
drifting grating input rate to neurons at that cortical point, for a specific
time—the grating drifts with a frequency ω = 2π/64 ms. (B) The
intensity shown indicates the obscured grating input rate to neurons at
each cortical point. The center and right half of the cortex is obscured
(neurons receive no feedforward input). Neurons inside the measured
region receive almost all their input from the rest of the cortex outside
the obscured region

between neurons and has spatial scale DQ . We choose the
strengths SAMPA = 3, SNMDA = 0.05, SGABA = 7, and the inter-
action spatial scales DAMPA = 24, DNMDA = 8, DGABA = 16 for
the purpose of illustrating the numerical methods only. The
system is driven by independent feedforward excitatory input
spike trains to each neuron, which are each specific realiza-
tions of a Poisson process with rates λLGN(xi , t) (to the i th
neuron). The strengths associated with these feedforward
input spikes are FAMPA = 0.05, FNMDA = 0. We design three
different stimulus paradigms to mimic the real LGN drive:

1. Uniform input: The feedforward input rate to each neuron
is uniform, with

λLGN(xi , t) = λ̄ := 0.05. (13)

2. Drifting grating: The input rate

λLGN(xi , t) = λ̃LGN(xi , t) := λ̄ (1 + cos(k · x + ωt)) (14)

mimics a sinusoidal grating drifting across the cortex. The
wavenumber k has magnitude 2π/12.8, and the frequency
ω = 2π/64 ms. See Fig. 4(A).

3. Obscured grating: The input rate

λLGN(xi , t) = �(xi )λ̃
LGN(xi , t), (15)

where the mask �(x) obscures the right half and central
region of the numerical cortex. See Fig. 4(B). This input
provides a particularly strong test of Algorithm 5.1, since the
obscured region is driven primarily by weak distant cortical
firing events.
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For each of these stimulus paradigms, our method
(Algorithm 5.1) is capable of accurately resolving every
spike, and computing conductances and voltages accurately
in the textbook sense of numerical solutions for ODEs.
However, if we insist on 1% accuracy in the voltage Vi

of all 64 × 64 neurons over the time-course of 1024 ms, we
are forced to take very small time-steps (typically �tmax =
2−14 ≈ 6 × 10−5 ms or smaller) in order to accurately re-
solve the entire system. However, in many applications, it is
not necessary to resolve every single trajectory of all neurons
in the system. For example, in traditional approaches, many
real experiments (Koch, 1999) only record the statistical
properties of subsets of neurons (or the entire system), such
as firing rate, ISI distributions, and correlations. An experi-
ment involving firing rate statistics may only be concerned
with the ISI distribution aggregated for many neurons in the
system over a long time. To numerically reproduce these
experiments we only need to obtain an accurate ISI distri-
bution, etc. In modern experimental approaches, such as in
vivo optical imaging based on voltage sensitive dyes (VSD),
which has proven to be a powerful tool to investigate cortical
spatiotemporal dynamics (Grinvald and Heildesheim, 2004),
statistical information further includes spatiotemporal volt-
age patterns and their corresponding distributions in time
and space. The VSD optical imaging has a spatial resolution
typically covering ∼50–200 neurons, and a sampling time of
about 1– 10 ms. Therefore, when attempting to numerically
model physiological phenomena, such as observed by VSD
optical imaging, we may require only an accurate mean volt-
age for ensembles of ∼50 neurons over time-intervals of, say,
8 ms. In both cases, the statistical properties of the network
can be accurately resolved with much less computational ef-
fort than it would take to accurately resolve each and every
neuronal trajectory. If we only require this type of statisti-
cal accuracy for the system above, we can take much larger
time-steps (typically �tmax = 2 ms, with �t ≈ 1 ms for each
step on average). Figure 5 shows the convergence results for
statistical properties.

In Section 6.2, we discussed the importance of spike-spike
corrections for the time-course of networks. Here, we dis-
cuss the importance of the spike-spike correction even for
obtaining statistical information of networks. For each stim-
ulus paradigm, we evolve the test system above for 1024 ms
using Algorithm 5.1 with varying �tmax. For comparison, we
also evolve the system using the naive algorithm—Algorithm
5.1 without spike-spike corrections. We record the following
statistical quantities:

1. The Inter-Spike-Interval histogram (ISI�t ) for the entire
system recorded over 1024 ms (cf. Fig. 5(D)). Every time
a neuron in the system fires, we record the time lapsed
since that same neuron last fired. The data is binned into
2 ms time bins.

2. The Accumulated Voltage histogram (AV�t ) for a patch
of 16 × 16 neurons accumulated over the final 32 ms of
a 1024 ms run (cf. Fig. 5(H)). We record the instanta-
neous voltage of every neuron in the region of interest
throughout the desired time interval, and bin the data into
16 equispaced voltage bins.

3. The Spike-triggered Voltage histogram (STV�t ) for a
patch of 16 × 16 neurons recorded over 1024 ms (cf.
Fig. 5(L)). We record the instantaneous voltage of ev-
ery neuron in the region of interest whenever any neuron
in that region fires, and bin the data into 16 equispaced
voltage bins.

As a measure of error, we use the relative max-norm—the
largest difference in histogram bins divided by the largest
bin, i.e.,

E I SI =
[

max
i=1...16

∣∣ISIexact − ISI�t
∣∣
] / [

max
i=1...16

∣∣ISIexact
∣∣
]

, (16)

E AV =
[

max
i=1...16

∣∣AVexact − AV�t
∣∣
] /[

max
i=1...16

∣∣AVexact
∣∣
]

, (17)

E ST V =
[

max
i=1...16

∣∣STVexact − STV�t
∣∣
] / [

max
i=1...16

∣∣STVexact
∣∣
]

,

(18)

where the exact histograms of ISIexact , AVexact , and
STVexact , such as shown in Figs. 5(D), (H) and (L), are es-
timated by using very small �tmax = 2−16 ≈ 1.5 × 10−5 ms
with Algorithm 5.1. We compute the errors in the histograms
for many different Poisson spike trains, each of which is used
for evolving the test system by using Algorithm 5.1 with and
without the spike-spike corrections. The average errors over
these trials are shown in Fig. 5. Clearly, it is demonstrated
in Fig. 5 that, as the time-step �t becomes smaller, the ap-
proximate histograms of ISI�t , AV�t , and STV�t , converge
to the exact histograms of ISIexact , AVexact , and STVexact ,
respectively. As seen in Fig. 5, the histograms generated by
the naive algorithm (i.e., without spike-spike corrections) do
not capture the statistical behavior of the system well, with a
significant difference from the histograms generated by Al-
gorithm 5.1 (with spike-spike corrections) for the same time
step �t. As we mentioned above, for sufficiently small time-
steps, of course, our methods can resolve the entire system
accurately in the traditional sense.

6.4. Large systems

To further emphasize the efficiency of Algorithm 5.1, we
construct the following test network which mimics the
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Fig. 5 Importance of spike-spike corrections for statistical informa-
tion. Displayed are error graphs for Algorithm 5.1 applied to a test
network under a variety of different stimuli. The test network con-
sists of a square lattice of 64 × 64 neurons (75% excitatory and 25%
inhibitory), of which each neuron has three types of conductance ex-
citatory GAMPA and GNMDA (with εAMPA = εNMDA = 14/3, σ AMPA = 2 ms
and σ NMDA = 80 ms) and inhibitory GGABA (with εGABA = −2/3 and
σ GABA = 7 ms). Each neuron is connected to its lattice neighbors with
strength SQ

i, j = SQ K Q(
∣∣�xi − �x j

∣∣), where index Q runs over the types
of conductance (with maximum strengths SAMPA = 3, SNMDA = 0.05,
SGABA = 7), and K Q is a normalized Gaussian spatial kernel (with in-
teraction scales DAMPA = 24, DNMDA = 8, DGABA = 16). The three types
of stimuli we consider for this test network are (i) homogeneous input
(Eq. (13)), (ii) drifting grating input (Eq. (14))—see Fig. 4(A) and (iii)
obscured grating input (Eq. (15))—See Fig. 4(B). Panels ABC,EFG,IJK
all share the same axis scales. The thick black line (with data points
marked by ‘�’) corresponds to Algorithm 5.1 (by default, with spike-
spike corrections). The dashed line (with data points marked by ‘ (�)’
corresponds to the naive algorithm (i.e., Algorithm 5.1 without spike-

spike corrections). In panels D,H,L, the thin black line indicates the
exact histogram (approximated by using Algorithm 5.1 with a suffi-
ciently small time-step); the thick black line corresponds to Algorithm
5.1 and the dashed line corresponds to the naive algorithm. (A,B,C)
Errors for the interspike-interval (ISI) histogram (Eq. (16)), as com-
puted when the network is subject to homogeneous background input
(A), drifting grating input (B) and obscured grating input (C). (D) The
ISI histograms computed with �t = 1 ms and compared with the
exact solution (thin black line). (E,F,G) Errors for the instantaneous
voltage (AV) histogram (Eq. (17)), as computed when the network is
subject to homogeneous background input (E), drifting grating input
(F) and obscured grating input (G). (H) The AV histograms computed
with �t = 1 ms. (I,J,K) Errors for the spike-triggered voltage (STV)
histogram (Eq. (18)), as computed when the network is subject to homo-
geneous background input (I), drifting grating input (J) and obscured
grating input (K). (L) The STV histograms computed with �t = 1
ms. Note that Algorithm 5.1 is much better than the naive algorithm
at capturing the statistical features of the network, especially for large
time-steps

large-scale network architecture found within V1. We con-
struct a square lattice of N neurons, similar to the network
described in Section 6.3, except that the interaction strengths
are given by SQ

i, j = SQ
TiT j

K Q(‖xi − x j‖), where the 6 con-
stants SQ

TiT j
determine the maximum connection strengths.

We choose SAMPA
E E = 5, SAMPA

I E = 2, SNMDA
E E = SNMDA

I E = 10−5,
SGABA

E I = 15, SGABA
I I = 5. (We remark that even though Algo-

rithm 5.1 has no problems resolving the system over a wide
range of coupling parameters, the modified Runge-Kutta
methods, which we use as a benchmark, estimate too many
NMDA driven spiking event for larger values of SNMDA

E E and
SNMDA

I E , and thus, given a fixed error tolerance, they require
so small time-steps that the computation is intractable). For

the purpose of illustration, we use the instantaneous value of
GNMDA as a measure of aggregate excitatory activity within
the system. Each neuron in the system is driven by excitatory
input spike trains, which are each independent realizations
of a Poisson process with rate λ(�x) = λ̄ := 0.15. For a fixed
system size N, we can evolve the system for 128 ms using
both Algorithm 5.1, and the modified Runge-Kutta methods
(Hansel et al., 1998; Shelley and Tao, 2001), which use
interpolation to determine individual spike times, but do not
incorporate spike-spike corrections, and do not use a spatial
divide-and-conquer scheme to take advantage of the spatial
architecture of the network. We vary the maximum timestep
�t and measure the instantaneous GNMDA profiles of a 64 × 64
neuron subregion at the 128 ms time point. We denote by NP
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Fig. 6 Efficiency of Algorithm 5.1. Displayed are graphs of relative
error and similarity coefficients for Algorithm 5.1 as well as the modi-
fied Runge-Kutta methods (Hansel et al., 1998; Shelley and Tao, 2001)
when applied to a test network under homogeneous input (with rate
λ̄ = 0.15 spikes/s). The test network consists of a square lattice of N
neurons (75% excitatory and 25% inhibitory), of which each neuron
has three types of conductance—excitatory GAMPA and GNMDA (with
εAMPA = εNMDA = 14/3, σ AMPA = 2 ms and σ NMDA = 80 ms) and in-
hibitory GGABA (with εGABA = −2/3 and σ GABA = 7 ms). Each neu-
ron is connected to its lattice neighbors with interaction strengths
given by SQ

i, j = SQ
TiT j

K Q(‖xi − x j ‖), where the 6 maximum connec-

tion strengths SQ
TiT j

are SAMPA
E E = 5, SAMPA

I E = 2, SNMDA
E E = SNMDA

I E = 10−5,

SGABA
E I = 15, SGABA

I I = 5, and K Q is a normalized Gaussian spatial ker-
nel (with interaction scales DAMPA = 24, DNMDA = 8, DGABA = 16). We
evolve the system and measure the instantaneous value of GNMDA of a
64 × 64 neuron subregion at the 128 ms time point. We denote by NP
the convolution of this GNMDA profile with a two-dimensional Gaussian
kernel with a radius of 2 neuron lattice spacings. We vary the time-step
and measure the accuracy (Eq. (19)) and similarity of NP as a function
of the overall computation time, where similarity is the spatial corre-

lation coefficient between NP�t (�x) and NPexact (�x) obtained from the
convergent solution computed using a sufficiently small time-step) Pan-
els AB,CD,EF display error and similarity graphs for system size 4096,
16384, 65536 respectively. Data points marked by ‘�’ correspond to
Algorithm 5.1. Data points marked by ‘�’ correspond to the modified
Runge-Kutta methods. (A,B) Relative errors (A) and similarity index
(B) obtained by evolving a system of size N1 = 4096. (C,D) Relative
errors (C) and similarity index (D) obtained by evolving a system of
size N2 = 16384. (E,F) Relative errors (E) and similarity index (F)
obtained by evolving a system of size N3 = 65536. (G) Snapshots of
NP for the system of size N1 = 4096 shown in panels (A,B)—the left
column illustrates the NP pattern obtained with the modified Runge-
Kutta methods (with computation times listed at the left), and the right
column illustrates the NP pattern obtained with Algorithm 5.1 (with
computation times listed at the right). Note that the time associated
with each panel is not the evolution time, but rather the computation
time required to evolve the system to the t = 128 ms time point. All
panels use the color bar at the bottom. Note that Algorithm 5.1 can
resolve the statistical features of the network within a fraction of the
time that the modified Runge-Kutta method requires

Springer



J Comput Neurosci (2007) 22:81–100 97

�t (�x) the linear convolution (spatial smearing) of the GNMDA

profile with a two dimensional Gaussian kernel with a radius
of 2 neuron lattice spacings. We compute the relative error

E N P (�t) = ∥∥NPexact (�x) − NP�t (�x)
∥∥

2 /‖NPexact (�x) ‖2,

(19)

where the exact solution NPexact (�x) is approximated by us-
ing a very small timestep with Algorithm 5.1. With this
data, we can measure the computation time necessary to
achieve a given statistical accuracy. The results for sys-
tems of size N1 ≈ 4.1 × 103, N2 = 4N1 ≈ 1.6 × 104 and
N3 = 4N2 ≈ 6.6 × 104 are shown in Fig. 6 for E N P (�t) as
well as for the similarity, which is the spatial correlation co-
efficient between NP�t (�x) and NPexact (�x) at t = 128 ms It
can be seen that, for these systems, Algorithm 5.1 can calcu-
late an accurate GNMDA profile quickly, whereas the modified
Rung-Kutta methods require at least 50 − 100 times as much
computation time to obtain the same degree of accuracy.
Figure 6(G) shows an example of the GNMDA profile at t = 128
ms obtained by applying both methods to the smallest system
(of size N1 ≈ 4.1 × 103). Note that the times marked are not
the evolution time, but rather the total computation time (in
seconds) that each algorithm takes to evolve the system to the
t = 128 ms time point (we run the code on a Linux platform
using a Intel Pentium IV 2.3 MHz processor). It can be seen
that Algorithm 5.1 obtains a convergent numerical solution
for NP within 1 minute, whereas the modified Runge-Kutta
methods require nearly an hour to resolve the computation.

As the system size increases, the disparity in performance
between Algorithm 5.1 and the modified Runge-Kutta meth-
ods becomes even more apparent. For example, we can try
to evolve a similar system of size N4 = 4N3 ≈ 2.6 × 105,
which is the order of magnitude needed to simulate many
V1 cortical phenomena (Cai et al., 2005; Rangan et al.,
2005). Algorithm 5.1 can resolve this system within 1 hour,
whereas the modified methods require nearly 6 months (as
a conservative estimate) to calculate a reasonable NP pro-
file. One reason for this disparity is that the spatial divide-
and-conquer scheme within Algorithm 5.1 focuses compu-
tational effort towards the resolution of the ≈ N D2 relevant
(strong) synapses within the network. The modified Runge-
Kutta methods, on the other hand, spend an equal amount of
time resolving all N 2 ordered pairs of neuronal interactions.

7. Conclusions

Algorithm 5.1 is a fast and accurate method for evolving
very large integrate-and-fire neuronal networks with local
coupling. There are three reasons underlying the efficiency
of the method:

1. The neurophysiologically inspired integrating factor in
Algorithm 8.1 allows us to evolve individual neuronal
trajectories without time-step restrictions due to stabil-
ity (i.e., even if the conductances are high and the I&F
neuronal equations are stiff).

2. The spike-spike corrections (step 12 of Algorithm 5.1)
allow us to accurately estimate spiking sequences for
groups of strongly coupled neurons without the usual
time-step restriction imposed by cortico-cortical interac-
tions in modified Runge-Kutta methods.

3. Given a system of N neurons, the neuron-neuron interac-
tions are grouped into local clusters. This clustering pro-
cedure allows Algorithm 5.1 to consider O(N ) spiking
events with only O(N ) operations. Therefore, the entire
system can be evolved in such a way that every neuron
fires approximately once in O(N ) operations, which is
asymptotically optimal.

Finally, we emphasize that this method is also practica-
ble. We have used Algorithm 5.1 to study spontaneous and
evoked activity in V1 through the investigation of the asso-
ciated spatiotemporal dynamics using large-scale, spatially
extended neuronal networks of model cortex (Cai et al., 2005;
Rangan et al., 2005).

8. Appendix A

We provide psuedocode for our single test neuron method.
Given an initial time t0 and time-step �t , initial val-
ues Vi (t0), G Q

i (t0), and spike times T F
i,k, Tj �=i,k from the

rest of the network, this method calculates a numerical
solution Vi (t0 + �t), G Q,i (t0 + �t) as well as the inter-
vening spike-times Ti,k for the i th neuron (i.e., the test
neuron).

Algorithm 8.1. Test Neuron Method

1. Input: an initial time t0, a time-step �t , a set of spike-
times Tj �=i,k, T F

i,k and associated strengths SQ
i, j , F Q

i , and a
quadrature order P.

2. Consider the time interval [t0, t0 + �t].
3. Define K to be the total number of impinging presy-

naptic inter-cortical and feedforward spikes within the
interval [t0, t0 + �t]. Sort these spikes into an increas-
ing list of K spike-times T sorted

k with corresponding spike
strengths Ssorted,Q

k . In addition, we extend this notation
such that T sorted

0 := t0, T sorted
K+1 := t0 + �t and Ssorted,Q

0 =
Ssorted,Q

K+1 := 0.
4. for k = 1 . . . K + 1

Choose a set of P quadrature nodes τ1 < τ2 <

· · · < τn < · · · < τP with corresponding weights
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{w1, . . . , wP} in the interval [T sorted
k−1 , T sorted

k ] (Forn-
berg, 1998).

Extend this notation such that τ0 := T sorted
k−1 and τP+1 :=

T sorted
k .

Evaluate the quantities G Q
i (τn) and GS

i (τn) exactly using
Eqs. (5) and (2).

Evaluate the quantity exp(
∫ τn

τ0
GS

i (r )dr ) exactly using
Eqs. (5) and (2).

Evaluate V S
i (τn) and d

dt V S
i (τn) exactly using Eqs. (3) and

(8).
Use Gaussian quadrature to approximate Vi (τP+1) using

Eq. (6).
Update the conductances G Q

i (τP+1) = G Q
i (T sorted

k ) by
adding the appropriate strengths Sk

sorted,Q. (see Eq.
(5)).

5. If the calculated values for Vi (T sorted
k ) are each less than

εT , then we accept the solution. We update t0 ← t0 + �t
and return to step 2 and continue.

6. Otherwise, let Vi (T sorted
k ) be the first calculated voltage

greater than εT . We know that the i th neuron spiked some-
where during the interval [T sorted

k−1 , T sorted
k ].

7. In this case we construct a Pth order polynomial in-
terpolant of Vi (t) − εT in the interval [T sorted

k−1 , T sorted
k ]

and search for a root. For example, when P = 3, we
can use the numerical values of Vi (T sorted

k−1 ), Vi (T sorted
k ),

d
dt Vi (T sorted

k−1 ), d
dt Vi (T sorted

k ) to form a cubic polynomial.
We record the root r as an approximation to the spike
time and set Vi (t) := εR for the next τre f ms. We up-
date t0 ← min(r + τre f , t + �t) and return to step 2 and
continue.

9. Appendix B

We provide a detailed description of the algorithm used for
spike-spike corrections. Given an initial time t0 and time-step
�t , a K-element list of spiking neurons A = {N1, . . . ,NK }
with initial conditions Vi (t0), G Q

i (t0), as well as feedforward
input spiketimes T F

i,k , this method calculates accurate tra-
jectories and spiketimes for the neuron list A over the time
interval [t0, t0 + �t].

Algorithm 9.1 Spike-Spike Corrections

1. Input: an initial time t0, a timestep �t , a set of K neu-
rons A[0] := A = {N1, . . . ,NK }, feeforward input spike-
times T F

i,k to those neurons, associated coupling strengths

SQ
i, j , F Q

i , and a quadrature order P.
2. Considering the time interval I [0] = [t0, t0 + �t], as well

as the spikes T F
i,k , use Algorithm 8.1 with quadrature or-

der P to approximate the neuronal trajectories of the
neurons within A[0]. Use Pth order polynomial inter-

polation to approximate the spiketime T [1]
i of each neu-

ron. Sort the list {T [1]
1 , . . . , T [1]

K } of neuronal spiketimes
into the increasing list T [1] = {T [1]

i1
1

, . . . , T [1]
i1

K
} such that

T [1]
i1

j
< T [1]

i1
j+1

.

3. Note that, because each cortical spike only affects future
neuronal trajectories, none of the cortical spikes within
the interval I [0] can affect the spiking event T [1]

i1
1

of neuron

Ni1
1
. Therefore we can assume that the neuronal trajec-

tories computed up to this spike, as well as the spiketime
T [1]

i1
1

itself, are accurate. Construct the list A[1] consisting

of all the neurons in A[0] except for Ni1
1
. Construct the

interval I [1] = [T [1]
i1
1

, t0 + �t].
4. Using the sorted list T [1] of neuronal spiketimes as

well as the spikes T F
i,k , use Algorithm 8.1 with quadra-

ture order P to re-approximate the neuronal trajecto-
ries of the neurons within A[1] on the interval I [1].
Again use Pth order polynomial interpolation to re-
approximate the spiketimes T [2]

i of each neuron. Sort the
list {T [2]

1 , . . . , T [2]
i1
1 −1

, T [2]
i1
1 +1

, . . . , T [2]
K } of neuronal spike-

times into the increasing list T [2] = {T [2]
i2
2

, . . . , T [2]
i2

K
} such

that T [2]
i2

j
< T [2]

i2
j+1

. Now we can assume that both the spike-
time T [1]

i1
1

as well as the spiketime T [2]
i2
2

are accurate.
Construct the set A[2] = A[1] − {Ni2

2
}, and the interval

I [2] = [T [2]
i2
2

, t0 + �t].
5. Continue in this manner, using the sorted list T [2]

as well as the spikes T F
i,k, {T [1]

i1
1

} and Algorithm 8.1
with quadrature order P to re-approximate the neu-
ronal trajectories on the interval I [2]. Use polyno-
mial interpolation to find spiketimes, and construct the
sorted list T [3] = {T [3]

i3
3

, . . . , T [3]
i3

K
}. Now we can assume

that the spiketimes {T [1]
i1
1

, T [2]
i2
2

, T [3]
i3
3

} are all accurate.
Construct the set A[3] = A[2] − {Ni3

3
}, and the interval

I [3] = [T [3]
i3
3

, t0 + �t].
6. Continue in this manner, at each step recording the spike-

time T [ j]

i j
j

of the first neuron Ni j
j

which fires within the

interval I [ j−1] = [T [ j−1]

i j−1
j−1

, t0 + �t] under the influence of

the feedforward input spikes T F
i,k as well as the accurate

spiketimes {T [1]
i1
1

, . . . , T [ j−1]

i j−1
j−1

}.
7. Finally, after K steps (and O(K 2) operations), we have

K accurate spike-times {T [1]
i1
1

, . . . , T [K ]
i K

K
}. Use these spike-

times as well as the feedforward spiketimes T F
i,k and Al-

gorithm 8.1 with quadrature order P to perform a final
correction of the neuronal trajectories of all neurons in
A[0] on the interval I [0] = [t0, t0 + �t].
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