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Population rate models provide powerful tools for investigating the prin-
ciples that underlie the cooperative function of large neuronal systems.
However, biophysical interpretations of these models have been ambigu-
ous. Hence, their applicability to real neuronal systems and their exper-
imental validation have been severely limited. In this work, we show
that conductance-based models of large cortical neuronal networks can
be described by simplified rate models, provided that the network state
does not possess a high degree of synchrony. We first derive a precise
mapping between the parameters of the rate equations and those of the
conductance-based network models for time-independent inputs. This
mapping is based on the assumption that the effect of increasing the cell’s
input conductance on its f-I curve is mainly subtractive. This assumption
is confirmed by a single compartment Hodgkin-Huxley type model with
a transient potassium A-current. This approach is applied to the study of
a network model of a hypercolumn in primary visual cortex. We also ex-
plore extensions of the rate model to the dynamic domain by studying the
firing-rate response of our conductance-based neuron to time-dependent
noisy inputs. We show that the dynamics of this response can be approxi-
mated by a time-dependent second-order differential equation. This phe-
nomenological single-cell rate model is used to calculate the response of
a conductance-based network to time-dependent inputs.
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1 Introduction

Theoretical models of the collective behavior of large neuronal systems can
be divided into two categories. One category attempts to incorporate the
known microscopic anatomy and physiology of the system. To study these
models, numerical simulations are required. They involve a large number
of parameters whose precise values are unknown, and the systematic ex-
ploration of the model parameter space is impractical. Furthermore, due
to their complexity, it is hard to construct a qualitative interpretation of
their behavior. The second category consists of simplified models that re-
tain only some gross features of the modeled system, thereby allowing for
systematic analytical and numerical investigations. These models have been
extremely useful in extracting qualitative principles underlying such func-
tions as memory, visual processing, and motor control (Amit, 1989; Church-
land & Sejnowski, 1992; Georgopoulos & Lukashin, 1993; Ben-Yishai, Lev
Bar-Or, & Sompolinsky, 1995; Seung, 1996; Zhang, 1996; Salinas & Abbott,
1996; Hansel & Sompolinsky, 1998; Rolls & Treves, 1998).

Simplified models of large neuronal systems are often cast in the form
of rate models, in which the state of the network units is characterized by
smooth rate variables (Wilson & Cowan, 1972; Hopfield, 1984). These vari-
ables are related to the units’ synaptic inputs via a nonlinear input-output
transfer function. The input is a linear sum of the presynaptic activities,
whose coefficients are termed the synaptic weights of the network. Unfortu-
nately, the use of rate models for concrete neuronal systems has been limited
by the lack of a clear biophysical interpretation of the parameters appear-
ing in these models. In particular, the relation between activity variables,
input variables, and synaptic weights, on one hand, and physiologically
measured quantities, on the other, is obscure. Furthermore, quite often rate
models predict that the network should settle in a fixed point where the
network activities, as well as synaptic inputs, are time independent. How-
ever, the biological meaning of this fixed-point state is unclear, since neither
the postsynaptic currents nor the postsynaptic potentials are constant in
time if the cells are active. It is thus important to inquire whether there is a
systematic relation between real neuronal systems and simple rate models.

Several studies have derived reduced-rate models for networks of spik-
ing neurons (Amit & Tsodyks, 1991; Abbott & Kepler, 1990; Ermentrout,
1994). In particular, it has been shown that if the synaptic time constants are
long, the network dynamics can be reduced to rate equations that describe
the slow dynamics of the synaptic activities (Ermentrout, 1994). However,
the assumption of slow synaptic dynamics is inadequate for modeling corti-
cal networks, where fast synapses play a dominant role. Here, we show that
asynchronous states of large cortical networks described by conductance-
based dynamics can be described in terms of simple rate equations, even
when the synaptic time constants are small. A simple mapping between the
synaptic conductances and the synaptic weights is derived. We apply our
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method to study the properties of conductance-based networks that model
a hypercolumn in visual cortex. The simple reduction of conductance-based
networks to rate models is restricted to asynchronous states that exist only
if the networks are driven by stationary inputs. We derive a more complex
rate model, which is appropriate to describe the synchronous response of
large conductance-based networks to weakly nonstationary noisy synaptic
inputs. Our results provide a framework for using rate models to quantita-
tively predict the extracellular and intracellular response properties of large
cortical networks.

2 Models and Methods

2.1 Dynamics of a Single-Compartment Cell. Our starting point is the
dynamic equation of a single-compartment neuron,

C
dV(t)

dt
= gL(EL − V(t))− Iactive(t)+ Iapp(t), (2.1)

where V(t) is the membrane potential of the cell at time t, C is its capac-
itance, gL is the leak conductance, and EL is the reversal potential of the
leak current. Besides the leak current, the cell has active ionic currents with
Hodgkin-Huxley type kinetics (Hodgkin & Huxley, 1952), the total sum of
which is denoted as Iactive(t) in equation 2.1. An externally injected current
is denoted as Iapp. If Iapp is constant in time and is sufficiently large, the cell
will fire in a repetitive manner with a steady-state firing rate f . In general,
the relation between the applied current, I, and the firing rate, f , defines
a function f = F(I, gL), called the f-I curve. The second argument, gL, ex-
presses the dependence of the input-output function of the neuron on the
magnitude of the leak conductance. This dependence is an important factor
in our work, as will become clear. The form of the function F depends on
the active currents comprising Iactive. In many cortical neurons, the f-I curve
is approximately linear for I above threshold (Azouz, Gray, Nowak, & Mc-
Cormick, 1997; Ahmed, Anderson, Douglas, Martin, & Whitteridge, 1998;
Stafstrom, Schwindt, & Crill, 1984) and can be captured by the following
equation,

f = β[I − Ic]+, (2.2)

where [x]+ ≡ x for x > 0 and is zero otherwise; β is the gain parameter. This
behavior can be modeled by a Hodgkin-Huxley type single compartment
neuron with a slow A-current (Hille, 1984). (See appendix A for the details
of the model.) The parameters of the sodium and the potassium currents
were chosen to yield a saddle-node bifurcation at the onset of firing. Figure 1
shows the response of this model neuron without and with the A-current. As
can be seen, the A-current linearizes the f-I relationship. Our model neuron
has gain value β = 35.4 cm2/µAsec.
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Figure 1: f-I curves of the single-neuron model with gA = 0 (dashed line),
gA = 20 mS/cm2, τA = 0 msec (dash-dotted line), gA = 20 mS/cm2, τA = 20 msec
(solid line). Comparison of the three curves shows that linearization of the f-
I curve is due to the long time constant of the A-current. (Inset) A voltage
trace of the single-neuron model with constant current injection of amplitude
I = 1.6 µA/cm2 for gA = 20 mS/cm2, τA = 20 msec. The neuron’s parameter
values are as defined in appendix A.

Relatively few experimental data have been published on the depen-
dence of the firing rate of cortical cells on their leak conductance. However,
experimental evidence (Connors, Malenka, & Silva, 1988; Brizzi, Hansel,
Meunier, van Vreeswijk, & Zytnicki, 2001) and biophysical models (Kernell,
1968; Holt & Koch, 1997) show that increasing gL affects the f-I curve pri-
marily by increasing its threshold current, whereas its effect on the gain of
the curve is weak. We incorporate these properties by assuming that β is
independent of gL and that the threshold current increases linearly with the
leak conductance,

Ic = Io
c + VcgL. (2.3)

The threshold gain potential Vc measures the rate of increase of the thresh-
old current as the leak conductance, gL, increases, and Io

c is the threshold
current when gL = 0. This behavior is also reproduced in our model neu-
ron, as shown in Figure 2. Approximating the f-I curve with equations 2.2
and 2.3 yields Io

c = 0.63 mA/cm2 and Vc = 5.5 mV. This provides a good
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Figure 2: f-I curves for gA = 20 mS/cm2, τA = 20 msec, and different values of
gL. The curves from left to right correspond to gL = 0.05, 0.1, 0.15, 0.2 mS/cm2,
respectively. (Inset) The threshold current, Ic, as a function of the leak conduc-
tance, gL.

approximation of the f-I curve for the range f = 5–150 spikes/sec. For higher
firing rates, the effect of the saturation of the rates becomes significant and
needs to be incorporated into the model. We have found that this effect can
be described approximately by an f-I curve of the form

f = β[I − Ic]+ − γ [I − Ic]2
+, (2.4)

with Ic given by equation 2.3. Fitting the firing rate of our single-neuron
model to equation 2.4 yields good fit over the range f = 5–300 spikes/sec,
with the parameter values β = 39.6 cm2/µAsec, γ = 0.86 (cm2/µA)2/sec,
α = 6.77 mV, and Io

c = 0.59 µA/cm2. The above conductance-based model
neuron is the one used in all subsequent numerical analyses.

2.2 Network Dynamics. The network dynamics of N coupled cells are
given by

C
dVi

dt
= gL(EL − Vi(t))− Iactive

i + Iext
i + Inet

i (i = 1, . . . ,N), (2.5)
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where Inet
i denotes the synaptic current of the postsynaptic cell i generated

by the presynaptic sources within the network. It is modeled as

Inet
i (t) =

N∑
j=1

gij(t)(Ej − Vi(t)), (2.6)

where gij(t) is the synaptic conductance triggered by the action potentials
of the presynaptic jth cell and Ej is the reversal potential of the synapse. The
synaptic conductance is assumed to consist of a linear sum of contributions
from each of the presynaptic action potentials. In our simulations, gij(t) has
the form of an instantaneous jump from 0 to Gij followed by an exponential
decay with a synaptic decay time τij,

dgij

dt
= − gij

τij
+ GijRj(t), t > 0, (2.7)

where Rj(t) =
∑

tj
δ(t − tj) is the instantaneous firing rate of the presy-

naptic jth neuron and tj are the times of occurrence of its spikes. In gen-
eral, we define Gij as the peak of gij(t) and the synaptic time constant as
τij =

∫∞
0 gij(t) dt/Gij.

Synaptic currents from presynaptic sources outside the network are de-
noted by Iext

i . For simplicity, we assume that these sources are all excitatory
with the same reversal potential, Einp, peak conductance Ginp, and synaptic
time constant, τ inp. We assume that these sources fire Poisson trains of ac-
tion potentials asynchronously, which generate synaptic conductances with
dynamics similar to equation 2.7. Under these assumptions, their summed
effects on the postsynaptic neuron i can be represented by a single effective
excitatory synapse with peak conductance, Ginp, time constant τ inp, and ac-
tivated by a single Poisson train of spikes with average rate f inp

i which is the
summed rate of all the external sources to the ith neuron. Thus, the external
current on neuron i can be written as

Iext
i (t) = ginp

i (t)(Einp − Vi(t)). (2.8)

The quantity ginp
i (t) satisfies an equation similar to equation 2.7,

dginp
i

dt
= − ginp

i

τ inp + GinpRinp
i (t), t > 0, (2.9)

where Rinp
i is a Poisson spike train with mean rate f inp

i . The value of f inp
i is

specified below for each of the concrete models that we study. Due to the
Poisson statistics of Rinp

i , the external conductance, ginp
i (t), is a random vari-

able with a time average and variance Ginp f inp
i τ inp and (Ginp)2 f inp

i τ inp/2,
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respectively. Note that f inp
i τ inp is the mean number of input spikes arriving

within a single synaptic integration time. The fluctuations in Rinp
i constitute

the noise in the external input to the network. We define the coefficient of
variation of this noise as the ratio of its standard deviation and its mean,

that is, 
i = 1/
√

2 f inp
i τ inp. As expected, the coefficient of variation is pro-

portional to the inverse square root of the total number of spikes arriving
within a single synaptic integration time. In particular, one can increase the
noise level of the input by decreasing f inp

i and increasing Ginp while keeping
their product constant.

Time-dependent inputs are modeled by a Poisson process with a rate
that is modulated in time. In most of the examples studied in this article,
we assume a sinusoidal modulation—that the instantaneous firing rate in
the external input to the neuron is

f inp(t) = f inp
0 + f inp

1 cos(ωt), (2.10)

where ω/2π is the frequency of the modulation.

2.3 Model of a Hypercolumn in Primary Visual Cortex. We model a
hypercolumn in visual cortex by a network consisting of Ne excitatory neu-
rons and Nin inhibitory neurons that are selective to the orientation of the
visual stimulus in their common receptive field. We impose a ring architec-
ture on the network. The cortical neurons are parameterized by an angle θ ,
which denotes their preferred orientation (PO). The ith excitatory neuron
is parameterized by θi = −π2 + i πNe

, and similarly for the inhibitory ones.
The peak conductances of the cortical recurrent excitatory and inhibitory
synapses decay exponentially with the distance between the interacting neu-
rons, measured by the dissimilarity in their preferred orientations, that is,

Gα(θ − θ ′) = Ḡα

λα
exp(−|θ − θ ′|/λα), (2.11)

where θ − θ ′ is the difference between the POs of the pre- and postsynaptic
neurons. The index α takes the values e and in. The quantity Ge (resp. Gin)
denotes an excitatory (inhibitory) interaction (targeting either excitatory
or inhibitory neurons) with a space constant λe (resp. λin). Note that the
excitatory as well as the inhibitory interactions are the same for excitatory
and inhibitory targets. Additional excitatory neurons provide external input
to the network, representing the lateral geniculate nucleus (LGN) input to
cortex, each with peak conductance Ginp = ḠLGN. The total mean firing rate
of the afferent inputs to a neuron with PO θ is f inp = fLGN(θ − θ0), where

fLGN(θ − θ0) = f̄LGNC[(1− ε)+ ε cos(2(θ − θ0))]. (2.12)



1816 O. Shriki, D. Hansel, and H. Sompolinsky

The parameter C is the stimulus contrast, and the angle θ0 denotes the ori-
entation of the stimulus. The parameter ε measures the degree of tuning of
the LGN input. If ε = 0, the LGN input is untuned: all the neurons receive
the same input from the LGN, regardless of their PO and the orientation of
the stimulus. If ε = 0.5, the LGN input vanishes for neurons with a PO that
is orthogonal to the stimulus orientation. The maximal LGN rate f̄LGN is the
total firing rate of the afferents of a stimulus with C = 1 and θ = θ0. The
single-neuron dynamics is given by equation 2.1 and is assumed to be the
same for both the excitatory and inhibitory populations.

2.4 Numerical Integration and Analysis of Spike Responses. In the
numerical simulations of the conductance-based networks, the nonlinear
differential equations of the neuronal dynamics were integrated using a
fourth-order Runge-Kutta method (Press, Flannery, Teukolsky, & Vetterling,
1988) with a fixed time step
t. Most of the simulations were performed with

t = 0.05 msec. In order to check the stability and precision of the results,
some simulations were also performed with 
t = 0.025 msec.

A spike event is counted each time the voltage of a neuron crosses a fixed
threshold value Vth = 0. We measure the instantaneous firing rate of a single
neuron defined as the number of spikes in time bins of size
t = 0.05 msec,
averaged over different realizations of the external input noise. We then
compute the time average of this response and, in the case of periodically
modulated input, the amplitude and phase of its principal temporal har-
monic. We also measure the population firing rate, defined as the number
of spikes of single neurons in each time bin divided by
t, averaged over a
select population of neurons in the network as well as over the input noise.
As in the case of a single neuron, the network response is characterized by
the time average and the principal harmonic of the population rate.

3 Rate Equations for General Asynchronous Neuronal Networks

The dynamic states of a large network characterized by the above equations
can be classified as being synchronous or asynchronous (Ginzburg & Som-
polinsky, 1994; Hansel & Sompolinsky, 1996), which differ in terms of the
strength of the correlation between the temporal firing of different neurons.
When the external currents, Iext

i , are constant in time (except for a possible
noisy component which is spatially uncorrelated), the network may exhibit
an asynchronous state in which the activities of the neurons are only weakly
correlated. Formally, in an asynchronous state, the correlation coefficients
between the voltages of most of the neuronal pairs approach zero in the
limit where the network size, N, grows to infinity.

Analyzing the asynchronous state in a highly connected network is rel-
atively simple. Because each postsynaptic cell is affected by many uncorre-
lated synaptic conductances (within a window of its integration time), these
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conductances can be taken to be time independent. In other words, in the
asynchronous state, the spatial summation of the synaptic conductances is
equivalent to a time average. Hence, the total synaptic current of each cell
can be written as

Inet
i (t)+Iext

i (t)=
N∑

j=1

Gijτij fj(Ej−Vi(t))+Ginpτ inp f inp
i (Einp−Vi(t)) (3.1)

(see equations 2.6 and 2.8). This current can be decomposed into two com-
ponents:

Inet
i + Iext

i = Iapp
i +
IL

i . (3.2)

Iapp
i is the component of the synaptic current that has the form of a constant

applied voltage-independent current

Iapp
i =

N∑
j=1

Gijτij fj(Ej − EL)+ Ginpτ inp f inp
i (Einp − EL). (3.3)

The second component of the synaptic current, 
IL
i , embodies the voltage

dependence of the synaptic current and has the form of a leak current,


IL
i = gsyn

i (EL − Vi(t)), (3.4)

where

gsyn
i = gnet

i + ginp
i (3.5)

is the mean total synaptic conductance of the ith cell. The quantities gnet
i and

ginp
i are given by

gnet
i =

N∑
j=1

Gijτij fj, (3.6)

ginp
i = Ginpτ inp f inp

i . (3.7)

Thus, the discharge of the postsynaptic cell in the asynchronous network can
be described by the f-I curve of a single cell with an applied current, equa-
tion 3.3, and a “leak” conductance, which is equal to gL+ gsyn

i , equation 3.5.
Incorporating these contributions in equation 2.2, taking into account the
dependence of the threshold current on the total passive conductance as
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given by equation 2.3, yields the following equations for the firing rates of
the cells:

fi = β[Iapp
i − Vc(gL + gsyn

i )− Io
c ]+ (3.8)

= β
[

N∑
i=1

Jij fj + Jinp f inp
i − T

]
+
, (i = 1, . . . ,N),

where

Jij = Gijτij(Ej − EL − Vc) (3.9)

and

Jinp = Ginpτ inp(Einp − EL − Vc). (3.10)

The parameter T is the threshold current of the isolated cells, T = Ic(gL).
Note that the subtractive term Vc in equations 3.9 and 3.10 is the result of the
increase of the current threshold of the cell due to the synaptic conductance
(see equation 2.3).

Equation 3.8 is of the form of the self-consistent rate equations that de-
scribe the input-output relations for the neurons in a recurrent network
at a fixed-point state. This theory provides a precise mapping between the
biophysical parameters of the neurons and synapses and the parameters ap-
pearing in the fixed-point rate equations. The output state variables, given
by the right-hand side of equation 3.8, are simply the stationary firing rates of
the neurons. The input variables,

∑N
i=1 Jij fj+ Jinp f inp

i , are the mean synaptic
currents at a fixed potential given by EL+Vc, where Vc is the threshold-gain
potential, equation 2.3.

Equation 3.9 provides a precise interpretation of the synaptic efficacies Jij
in terms of the biophysical parameters of the cells and the synaptic conduc-
tances. We note in particular that our theory yields a precise criterion for the
sign of the efficacy of the synaptic connection. According to equation 3.9,
synapses with positive efficacy obey the inequality

Ej > EL + Vc. (3.11)

Conversely, synapses with negative efficacies obey Ej < EL + Vc. The po-
tential EL + Vc is close but not identical to the threshold potential of the
cell. Hence, this criterion, which takes into account the dynamics of firing
rates in the network, does not match exactly the biophysical definition of
excitatory and inhibitory synapses.

The above results allow the prediction not only of the stationary rates of
the neurons but also their mean synaptic conductances due to the input from
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within the network and to the external input. In fact, using equations 3.6
and 3.7 and equations 3.9 and 3.10 yields

gnet
i =

N∑
j=1

Jij
fj

Ej − EL − Vc
(3.12)

and

ginp
i = Jinp f inp

i

Einp − EL − Vc
. (3.13)

In the following sections, we apply this theory to concrete network ar-
chitectures.

4 Response of an Excitatory Population to a Time-Independent Input

We first test the mapping equations, equations 3.8 through 3.10, in the case
of a large, homogeneous network that contains N identical excitatory neu-
rons. The network dynamics are given by equations 2.5 through 2.7 with the
single-neuron model of appendix A. Each neuron is connected to all other
neurons with a peak synaptic conductance, G, which is the same for all the
connections in the network. In addition, each neuron receives a single ex-
ternal synaptic input that has a peak conductance, Ginp, which is activated
by a Poisson process with a fixed uniform rate, f inp. The external synap-
tic inputs to different cells are uncorrelated. The dynamic response of all
synaptic conductances is given by equation 2.7 with a single synaptic time
constant τe = 5 msec.

Applying equations 3.8 through 3.10 to this simple architecture results
in the following equation for the mean firing rate of the neurons in the
network, f ,

f = β[Jinp f inp + Jf − Ic]+ (4.1)

where

Jinp = Ginpτe(Ee − EL − Vc) (4.2)

J = NGτe(Ee − EL − Vc).

The solution for the firing rate is

f = β

1− β J
[Jinp f inp − Ic]+. (4.3)

The mean firing rate, f , of the neurons in the network, as predicted from
this equation, is displayed in Figure 3 (dashed line) against the value of the
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Figure 3: Firing rate versus excitatory synaptic strength in a large network of
fully connected excitatory neurons. The rate of the external input is f inp =
1570 spikes/sec, and the synaptic time constant is τe = 5 msec. Dashed line: An-
alytical results from equation 4.3. Solid line: Analytical results when a quadratic
fit is used for the f-I curve, equation 2.4. Circles: Results from simulations of
the conductance-based model with N = 1000. (Inset) Firing rate versus exter-
nal input for strong excitatory feedback (analytical results) showing bistability
for NG = 0.49 µS/cm2. The network can be either quiescent or in a stable sus-
tained active state in a range of external inputs, Jinp f inp, less than the threshold
current, Ic.

peak conductance of the total excitatory feedback, NG. When the synaptic
conductance increases, such that J reaches the critical value J = 1/β (corre-
sponding to NG = 0.095 mS/cm2), the firing rate, f , diverges. However, it
is expected that when the firing rate reaches high values, the weak nonlin-
earity of the f-I curve, given by the quadratic correction, equation 2.4, will
need to be taken into account. Indeed, solving the self-consistent equation
for f with the quadratic term (solid line in Figure 3) yields finite values for f ,
even when J is larger than 1/β. In addition, the quadratic nonlinearity pre-
dicts that in the high J regime, the network should develop bistability. For a
range of subthreshold external inputs, the network can be in either a stable
quiescent state or a stable active state with high firing rates, as shown in the
inset of Figure 3. These predictions are in full quantitative agreement with
the numerical simulations of the conductance-based excitatory network as
shown in Figure 3.
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5 A Model of a Hypercolumn in Primary Visual Cortex

In this section we show how the correspondence between conductance-
based models and rate models can be applied to investigate a model of a
hypercolumn in V1.

When applying the general rate equations, equations 3.8 through 3.10,
to the hypercolumn model, we first note that in the asynchronous state,
the firing-rate profile of the excitatory and the inhibitory populations is the
same. This is because we assume that the interaction profiles depend solely
on the identity (excitatory or inhibitory) of the presynaptic neurons and
that the single-neuron properties of the two types of cells are the same. We
denote the rate of the (e or in) neurons with PO θ and a stimulus orientation
θ0 as f (θ − θ0). These rates obey

f (θ − θ0) = β
[∫ +π/2
−π/2

dθ
π

′
J(θ − θ ′) f (θ ′ − θ)

+ JLGN fLGN(θ − θ0)− T

]
+
, (5.1)

where we replaced the sum over the synaptic recurrent inputs by an in-
tegration over the variable θ ′, which is a valid approximation for a large
network. The recurrent interaction profile, J(θ), combines the effect of the
excitatory and the inhibitory cortical inputs and has the form

J(θ − θ0) =
∑
α=e,in

Jα
λα

exp(−|θ − θ ′|/λα), (5.2)

where Jα = NαḠατα(Eα−EL−Vc),α = e, in, and JLGN = ḠLGNτe(Ee−EL−Vc);
τα denotes the excitatory and inhibitory synaptic time constants, and Ne,
Nin are the number of neurons in the excitatory and inhibitory popula-
tions, respectively. Equations 5.1 and 5.2 correspond to the rate equations 3.8
through 3.10 with the synaptic conductances and input firing rate, which
are given by equations 2.11 and 2.12. In appendix B, we outline the ana-
lytical solution of equations 5.1 and 5.2, which allows us to compute the
neuronal activity and the synaptic conductances as functions of the model
parameters.

We used the analytical solution of these rate equations to explore how the
spatial pattern of activity of the hypercolumn depends on the parameters
of the recurrent interactions (Je,Jin, λe, and λin) and the stimulus properties.

5.1 Emergence of a Ring Attractor. We first consider the case of an un-
tuned LGN input, ε = 0. In this case, equation 5.1 has a trivial solution
in which all the neurons respond at the same firing rate. As shown in
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appendix B, this solution is unstable when the spatial modulation of the
effective interaction, equation 5.2, is sufficiently large. The condition for the
onset of this instability is given by equation B.4. When the homogeneous
solution is unstable, the system settles into a heterogeneous solution, which
has the form f (θ) = M(θ − ψ). The angle ψ is arbitrary and reflects the
fact that the system is spatially invariant. The manifold of stable states that
emerges in this system and breaks its spatial symmetry is known as a ring
attractor. The function M, which represents the shape of the activity profile
in each of these states, can be computed analytically, as described in ap-
pendix B. Depending on which mode is unstable, the heterogeneous profile
of activity that emerges consists of a single “hill” of activity or several such
“hills.” In appendix B, we describe how the function M can be computed in
the case of a state with a single hill.

As an example, we consider the caseλe = 11.5◦,λin = 43◦, andβ Jin = 0.73.
For this choice of parameters, equation B.4 predicts that the state with a
homogeneous response is stable for β Je < 0.87 and unstable for β Je > 0.87.
At β Je = 0.87, the unstable mode corresponds to the first Fourier mode.
Therefore, the instability at this point should give rise to a heterogeneous
response with a unimodal profile of activity (a single hill). This is confirmed
by the numerical solution of the rate equations, 5.1 and 5.2.

Using the mapping prescriptions, equation 3.9, these results can be trans-
lated into the prediction that ifλe = 11.5◦,λin = 43◦, NinḠin = 0.333 mS/cm2,
the homogeneous state is stable for conductance-based model if NeḠe <

0.138 mS/cm2, but that it is unstable for NeGe > 0.138 mS/cm2. We tested
whether these predictions coincide with the actual behavior of the conduc-
tance-based model in numerical simulations. Figures 4A and 4B show raster
plots of the network for NeḠe = 0.133 mS/cm2 and NeḠe = 0.143 mS/cm2, re-
spectively. For NeḠe = 0.133 mS/cm2, neurons in all the columns responded
in a similar way. This corresponds to the homogeneous state of the rate
model. Moreover, in this simulation, the average population firing rate was
f = 18 spikes/sec, in excellent agreement with the value predicted from
the rate model for the corresponding parameters ( f = 18.05 spikes/sec).
In contrast, for NeḠe = 0.143 mS/cm2, the network does not respond ho-
mogeneously to the stimulus. Instead, a unimodal hill of activity appears.
This is congruent with the prediction of the rate model. Since the external
input is homogeneous, the location of the peak is arbitrary. In the numerical
simulations, the activity profile slowly moves due to the noise in the LGN
input.

The stability analysis of the homogeneous state of the rate model shows
that if β Jin > 0.965, which corresponds to NinḠin = 0.443 mS/cm2, the mode
n = 2 is the one that first becomes unstable when Je increases. This suggests
that in this case, the profile of activity that emerges through the instability is
bimodal. Numerical simulations of the full conductance-based model were
found to be in excellent agreement with this expectation (see Figure 5).
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Figure 4: Symmetry breaking leading to a unimodal activity profile. A network
with Ne = Nin = 1600 was simulated for two values of the maximal conductance
of the excitatory synapses. The external input to the network is homogeneous
(ε = 0). The input rate is f̄LGN = 2700 Hz. The maximal conductance of the input
synapses is Ginp = 0.0025 mS/cm2. Parameters of the interactions are λe = 11.5◦,
λin = 43◦, NinḠin = 0.333 mS/cm2. The time constants of the synapses are τe =
τin = 3 msec. The analytical solution of the rate model equations predicts that for
NeḠe < 0.138 mS/cm2, the response of the network to the input is homogeneous
and that for NeḠe > 0.138 mS/cm2, it is unimodal. (A) Raster plot of the network
for NeḠe = 0.133 mS/cm2 showing that the response is homogeneous. (B) NeḠe =
0.143 mS/cm2, showing that the response is a unimodal hill of activity. The noise
that is present in the system induces a slow random wandering of the hill of
activity.

5.2 Tuning of Firing Rates and Synaptic Conductances. We consider
now the case of a tuned LGN input, which corresponds to ε > 0. Equation 5.1
shows that in general, the response of a neuron with PO θ depends on the
stimulus orientation θ0 through the difference θ−θ0—namely, that f (θ, θ0) =
M(|θ − θ0|). For fixed θ0, when θ varies, f (θ, θ0) is the profile of activity of
the network in response to a stimulus of orientation θ0. Conversely, when
θ is fixed and θ0 varies, f (θ, θ0) is the tuning curve of the neuron with PO
θ . Therefore, the function M determines the tuning curve of the neurons in
the model.

We now compare the tuning curves of the neurons computed in the
framework of the rate model with those in the corresponding simulations
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Figure 5: Symmetry breaking leading to a bimodal activity profile. The size of
the simulated network is Ne = Nin = 1600. The input rate is f̄LGN = 2700 Hz.
The maximal conductance of the input synapses is Ginp = 0.0025 mS/cm2. The
parameters of the interactions are λe = 11.5◦, λin = 43◦, NinGin = 1.33 mS/cm2.
The time constants of the synapses are τe = τin = 3 msec. The analytical solution
of the rate model equations predicts that for NeḠe < 0.196 mS/cm2, the response
of the network to the input is homogeneous and that for NeḠe > 0.196 mS/cm2,
it is bimodal. (A) Raster plot of the network for NeḠe = 0.19 mS/cm2, showing
that the response is homogeneous. The average firing rate in the network in the
simulation is f = 3.2 spikes/sec, which is in good agreement with the prediction
of the rate model ( f = 2.9 spikes/sec). (B) NeḠe = 0.138 mS/cm2, showing that
the response is bimodal. The noise that is present in the system induces a slow
random wandering of the pattern of activity.

of the conductance-based network. Specifically, we take ε = 0.175 and
f̄LGN = 3400 Hz. For these values, in the absence of recurrent interac-
tions, the response of the neurons to the input exhibits broad tuning. This
is shown in Figure 6 (dashed line). The recurrent excitation can sharpen the
tuning curves and also amplify the neuron response, as shown in Figure 6.
In this figure, we plotted the neuronal tuning curve when the parameters
of the interactions are λe = 6.8◦ and λin = 43◦, NeḠe = 0.125 mS/cm2,
NinḠin = 0.333 mS/cm2. The solid line was computed from the solution of
the mean-field equations of the corresponding rate model. This solution in-
dicates that the tuning width is θC = 30◦ and that the maximal firing rate is
fmax = 75.5 spikes/sec. The circles are from the numerical simulations of the
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Figure 6: Tuning curves of the LGN input (dashed line) oriented at θ0 = 0◦

and the spike response of a neuron with preferred orientation θ = 0◦ (solid line
and circles). The LGN input parameters are ε = 0.175, ginp = 0.0025 mS/cm2,
f̄LGN = 3400 Hz. The interaction parameters are λe = 6.3◦, λin = 43◦, NeḠe =
0.125 mS/cm2, NinḠin = 0.467 mS/cm2. The time constants of the synapses are
τe = τin = 3 msec. The circles are from numerical simulations with Ne = Nin =
1600 neurons. The response of the neuron was averaged over 1 sec of simulation.
The solid line was obtained by solving the rate model with the corresponding
parameters.

conductance-based model. The agreement with the analytical predictions
from the rate model is very good.

The input conductances of the neurons in V1 change upon presenta-
tion of a visual stimulus. Experimental results (Borg-Graham, Monier, &
Fregnac, 1998; Carandini, Anderson, & Ferster, 2000) indicate that with
large stimulus contrasts, these changes have typical values of 60% when
the stimulus is presented at null orientation, whereas they can be as large
as 250 to 300% at optimal orientation. We applied our approach to study
the dependence of the total change in input conductance on the space
constants of the interactions for a given LGN input. We assume that the
cortical circuitry sharpens and amplifies the response such that the tun-
ing curves have a given width θC and amplitude fmax. We compute the
interaction parameters to achieve tuning curves with a given width, θC
and a given maximal discharge rate, fmax. To be specific, we take θC =
30.5◦, fmax = 70 spikes/sec. We also fixed the space constant of the
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Figure 7: Change in the input conductance in iso (solid line) and cross-
orientation (dashed line). The lines were computed as explained in the text.

inhibitory interaction, λin = 43◦, and varied the value of λe. For each value
of λe, we evaluated the values of Je and Jin that yield the desired values
of θC and fmax. Subsequently, for each set of parameters, we computed
the changes in the input conductance of the neurons, relative to the leak
conductance, for a stimulus presented in iso and cross orientation. These
changes, denoted by
giso and
gcross, respectively, are increasing functions
of λe, as shown in Figure 7. Actually, it can be shown analytically from the
mean field equations of the rate model that the conductance changes di-
verge when λe → λin. This is because in that limit, the net interaction is
purely excitatory with an amplitude that is above the symmetry-breaking
instability.

The rate model also allows us to estimate the separate contributions of
the LGN input, the recurrent excitation, and the cortical inhibition to the
change in total input conductance induced by the LGN input. An exam-
ple of the tuning curves of these contributions is shown in Figure 8, where
they are compared with the results from the simulations of the full model.
These results indicate that for the chosen parameters, most of the input con-
ductance contributed by the recurrent interactions comes from the cortical
inhibition. This is despite the fact that the spike discharge rate is greatly
amplified by the cortical excitation.
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Figure 8: Tuning curves of conductances. Solid line: Total change. Dotted line:
Contribution to the total change from the LGN input. Dashed line: Contribution
to the total change from the recurrent excitatory interactions. Dash-dotted line:
Contribution to the total change from the recurrent inhibitory interactions. These
lines were obtained from the solution of the mean-field equations of the rate
model. The parameters are as in Figure 6. The squares, circles, triangles, and
diamonds are from numerical simulations. Same parameters as in Figure 6.

6 Rate Response of a Single Neuron to a Time-Dependent Input

The analysis of the previous sections focused on situations in which the
firing rates of the neurons were approximately constant in time. We now
turn to the question of firing-rate dynamics, namely, how to describe the
neuronal firing response in the general situation in which the firing rates
are time dependent.

We first study the response of a single neuron to a noisy sinusoidal input,
equation 2.10. The firing rate of the neuron (averaged over the noise) can be
expanded in a Fourier series:

f (t) = f0 + f1 cos(ωt+ φ)+ · · · , (6.1)

where f0 is the mean firing rate and f1 and φ are the amplitude and phase
of the first harmonic (the Fourier component at the stimulation frequency).
Here, we consider only cases in which the modulation of the external input
is not overly large, so that there is no rectification of the firing rate by the
threshold.
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Under these conditions, our simulations show that harmonics with or-
ders higher than 1 are negligible (results not shown). Therefore, the response
of the neuron can be characterized by the average firing rate f0 and the
modulation f1, f1 < f0. Our simulations also show that the mean response,
f0, depends only weakly on the modulation frequency of the stimulus or
on the stimulus amplitude and can be well described by the steady-state
frequency-current relation. This is shown in Figure 9 (left panels), where
the predictions from the rate model (solid horizontal lines) are compared
with the mean output rates in the numerical simulations of the conductance-
based model (open circles).

Figure 9 also shows the amplitude of the first harmonic of the response
and its phase shift φ as a function of the modulation frequency ν ≡ ω/2π
(filled circles). It should be noted that the raw response of the neuron re-
flects two filtering processes of the external input rate: the low-pass filtering
induced by the synaptic dynamics and the filtering induced by the intrinsic
dynamics of the neuron and its spiking mechanism. To better elucidate the
transfer properties of the neuron, we remove the effect of the synaptic low-
pass filtering on the amplitude and phase of the response. (This corresponds
to multiplying f1 by

√
1+ ω2(τ inp)2 and subtracting tan−1(−ωτ inp) from the

phase.) The results for two values of the mean output rate, f0 
 30 spikes/sec
and f0 
 60 spikes/sec, and for two values of the input noise coefficient of
variation, 
 = 0.18 ( f inp

0 = 1125 Hz) and 
 = 0.3 ( f inp
0 = 3125 Hz), are

presented. Clearly, both the amplitude and the phase of the response de-
pend on the modulation frequency. Of particular interest is the fact that
the amplitude exhibits a resonant behavior for modulation frequencies
close to the mean firing rate of the neuron, f0. The main effect of increas-
ing the coefficient of variation of the noise is to broaden the resonance
peak.

As in our analysis of the steady-state properties, the external synap-
tic input can be decomposed here into a current term, and a conductance
term, which are now time dependent. The simplest dynamic model would
be to assume that the same f-I relation that was found under steady-state
conditions, Equations 2.2 and 2.3, holds when the applied current and the
passive conductance are time dependent. In our case, this would take the
form f (t) = β[I(t) − (Io

c + Vcg(t))]+. This model predicts that the response
amplitude does not depend on the modulation frequency and that the phase
shift is always zero, in contrast to the behavior of the conductance-based
neuron (see Figure 9). To account for the dependence of the modulation
frequency, we extend the model by assuming that it has the form

f (t) = β[Ifilt(t)− (Io
c + Vcgfilt(t))], (6.2)

where Ifilt(t) and gfilt(t) are filtered versions of the current and conductance
terms, respectively. For simplicity, we use the same filter for both current and
conductance. A first-order linear filter can be either a high-pass or a low-pass
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Figure 9: Mean, amplitude, and phase of single-neuron rate response as a func-
tion of the modulation frequency. The left panels show the mean output rate of
the neuron (hollow circles) and the amplitude of the response (filled circles). The
right panels show the phase of the response. The solid curves are the predictions
of the dynamic rate model (see the text). The external input was designed to pro-
duce a mean output rate of about∼ 30 spikes/sec in A and B and∼ 60 spikes/sec
in C and D. A and C show the responses to inputs with a small noise coefficient

of variation, 
 = 1/
√

2 f inp
0 τ inp = 0.18, while B and D show the responses to

inputs with a high noise level, 
 = 0.3.

filter. Since the dependence of the response amplitude on the modulation
frequency has a bandpass nature, a first-order linear filter would not be
suitable. Thus, we assume a second-order linear filter. The filter for the
current is described by

1
ω2

0

d2Ifilt

dt2 +
1
ω0Q

dIfilt

dt
+ Ifilt = I + a

ω0

dI
dt
, (6.3)
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Figure 10: Resonance frequency (ω0/2π ) as a function of the mean output rate.
For each value of the mean output rate, optimal values ofω0 were averaged over
four noise levels: 
 = 0.15, 0.18, 0.22, 0.3. The range of modulation frequencies
for the fit was 1–100 Hz. The optimal linear fit (solid line) has a slope of 1 and
an offset of 13.1.

and a similar equation (with the same parameters) defines the conductance
filter. This is the equation of a damped harmonic oscillator with a reso-
nance frequency ω0/2π and Q-factor Q (Q is defined as ω0 over the width
at half height of the resonance curve). Note that the driving term is a linear
combination of the driving current input and its derivative.

We investigated the behavior of the optimal filter parameters over a range
of mean output rates, 10–70 spikes/sec, and a range of input noise levels,

 = 0.15–0.3. For lower noise levels, the response profile contains addi-
tional resonant peaks (both subharmonics and harmonics) that cannot be
accounted for by the linear filter of equation 6.3. For each mean output rate
and input noise level, we ran a set of simulations with modulation frequen-
cies ranging from 1 Hz to 100 Hz, and then numerically found the set of
filter parameters that gave the best fit for both amplitude and phase of the
response. The variation of the optimal values for Q and a was small under
the range of input parameters we considered, with mean values of Q = 0.85
and a = 1.9. The resonance frequency ω0/2π depends only weakly on the
noise level but increases linearly with the mean output rate of the neuron,
with a slope of 1, ω0/2π = f0+13.1, as shown in Figure 10. The solid curves
in Figure 9 show the predictions of equation 6.3 for the amplitude and phase
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Figure 11: Single-neuron response to a broadband signal. The thick curve shows
the rate of the conductance-based neuron, and the thin curve shows the predic-
tion of the rate model. The input consisted of a superposition of 10 cosine func-
tions with random frequencies, amplitudes, and phases (see text for specifics).
For clarity, only the fluctuations around the mean firing rate (∼ 30 spikes/sec)
are shown.

of the rate response using the mean values of Q and a and the linear fit for
ω0, mentioned above. The results show that this model is a reasonable ap-
proximation of the response modulation of the conductance-based neuron.

So far, we have dealt with the firing-rate response of a single neuron to
input composed of a single sinusoid. We also tested the response of the neu-
ron to a general broadband stimulus. For this, we used a Poissonian input
characterized by a mean rate and a time-varying envelope that consisted
of a superposition of 10 cosine functions with random frequencies, ampli-
tudes, and phases. The mean input rate was chosen to obtain a mean output
firing rate∼ 30 spikes/sec. The modulation frequencies were drawn from a
uniform distribution between 0 and 60 Hz and the phases from a uniform
distribution between 0 and 360◦. The relative amplitudes were drawn from
a uniform distribution between 0 and 1, and to avoid rectification, they were
normalized so that their sum is 0.8. The results are presented in Figure 11.
They show that the response to a broadband stimulus can be predicted from
the response to each of the Fourier components. This confirms the validity
of our linearity assumption, equation 6.2.
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7 Response of a Neuronal Population to a Time Periodic Input

We now apply the approach of the previous section to study the dynamics
of a network of interacting neurons in response to a time-dependent in-
put. Here we consider the case of a large, homogeneous network of N fully
connected neurons, which receive an external noisy oscillating input. The
input to each neuron is a Poisson process with a sinusoidal envelope. In
addition, the firing times of the inputs that converge on different cells in the
network are uncorrelated, so that the Poissonian fluctuations in the inputs
to the different cells are uncorrelated. Nevertheless, since the underlying
oscillatory rate of the different inputs is coherent, the network response will
have a synchronized component. To construct a simple model of the dy-
namics of the network rate, we first define two conductance-rate variables,
r(t) = g(t)/(NGτe) and rinp(t) = ginp(t)/(Ginpτe), where G and Ginp are the
peak conductances of the recurrent and afferent synapses, respectively.

Averaging equation 2.7 over all the neurons in the network yields the
following equation for the population conductance rate,

τe
dr
dt
= −r+ f (t), (7.1)

where f (t) is the instantaneous firing rate of the network per neuron. A
similar equation holds for rinp(t), which is a low-pass filter of f inp(t). The
equation for f (t) is

f (t) = β[Jinpρinp + Jρ − Ic], (7.2)

where Jinp and J are given in equation 4.3. The quantities ρ(t) and ρinp(t) are
obtained from r(t) and rinp(t), respectively, using the filter in equation 6.3,

1
ω2

0

d2ρ

dt2 +
1
ω0Q

dρ
dt
+ ρ = r+ a

ω0

dr
dt
, (7.3)

and a similar equation holds for ρinp. This yields a set of self-consistent
equations, which determine the firing rate of the neurons in the network,
f (t). For response modulation amplitudes smaller than the mean firing rate,
the dynamics are linear and can be solved analytically (see appendix C).
Figure 12 shows the mean, amplitude, and phase of the network response
f (t)obtained by simulating the dynamics of the conductance-based network
together with the analytical predictions of the rate model. (As in the previous
section, the filtering done by the input synapses was removed for purposes
of presentation.) The mean rate of the Poisson input and the strength of
the synaptic interaction were chosen such that the mean firing rate of the
network will be around 50 spikes/sec and the noise level will be 
 = 0.22.

The results of Figure 12 reveal the effect of the recurrent interactions on
the modulation of the network rate response. Qualitatively, the peak of the
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Figure 12: Response of an excitatory network to a sinusoidal stimulus.
(Top) Mean (hollow circles) and amplitude (filled circles). (Bottom) Phase. The
network consists of N = 4000 neurons. The neurons are coupled all-to-all. The
synaptic conductance is NG = 0.039 mS/cm2, and the synaptic time constant is
τe = 5 msec. The reversal potential of the synapses was Ve = 0 mV.

response amplitude profile is suppressed and shifts to smaller frequencies
due to the excitatory connectivity. In contrast, for an inhibitory network, the
model predicts that the peak response will be shifted to the right and that
the resonant behavior will be more pronounced. This can be proved from
equation C.2 by taking negative J. To test this prediction, we ran simula-
tions of a uniform fully connected network with inhibitory synapses (the
reversal potential was −80 mV). The input parameters and the strength of
the synaptic interaction were chosen to produce a mean firing rate around
50 spikes/sec and a noise level
 = 0.3. Shown in Figure 13 are the results of
the numerical simulations, together with the prediction of the rate model.
These results provide additional strong support for our phenomenological
time-dependent rate response model.

8 Discussion

The rate models derived here are based on specific assumptions about sin-
gle cell properties. The most important assumptions are the independence
of the gain of the f-I curve of the leak conductance, gL (see equation 2.2) and
the approximated linear dependence of the threshold current on gL (see
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Figure 13: Response of an inhibitory network to a sinusoidal stimulus.
(Top) Mean (hollow circles) and amplitude (filled circles). (Bottom) Phase. The
network consists of N = 4000 neurons. The neurons are coupled all-to-all. The
synaptic conductance is NG = 0.18 mS/cm2, and the synaptic time constant is
τe = 5 msec. The reversal potential of the synapses was Vin = −80 mV.

equation 2.3). This means that shunting conductances have a subtractive ef-
fect rather than a divisive one. This is in agreement with previous modeling
studies (Holt & Koch, 1997) and with the properties of the conductance-
based model neuron used in our study (see Figure 2). Recent experiments
using the dynamic clamp technique provide additional support for this as-
sumption (Brizzi et al., 2001; Chance, Abbott, & Reyes, 2002). A further
simplifying assumption, supported by experiments, is that in a broad range
of input currents and output firing rates, the f-I curves of cortical neurons
can be well approximated by a threshold linear function. We used such a
form of the f-I curve to show that the response of a single neuron to a sta-
tionary synaptic input can be well described by simple rate models with
threshold nonlinearity. We applied our single-neuron model to the study
of a network of neurons, receiving an input generated by a set of synapses
activated by uncorrelated trains of spikes with stationary Poisson statistics.
In this case, we derived a rate model under the additional assumptions that
the network is highly connected and that it is in an asynchronous state.

The mapping of the conductance-based model onto a rate model de-
scribed in this work provides a correspondence between the “synaptic ef-
ficacy” used in rate models and biophysical parameters of the neurons. In
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particular, the sign of the synaptic efficacy is determined by the value of
the reversal potential relative to EL + Vc, where Vc is the threshold gain-
potential of the postsynaptic neuron (see equation 2.3). Furthermore, our
theory enables the use of rate models to calculate synaptic conductances
that are generated by the recurrent activity, allowing a quantitative com-
parison of predictions from rate models and conductance measurements in
in vitro and in vivo intracellular experiments.

In the case of a fully connected network of excitatory neurons, we showed
that the firing rate of the neurons predicted by the rate model was highly
congruent with simulation results in a broad range of synaptic conduc-
tances. This indicates that our rate model provides reliable results over a
broad range of firing rates and conductance changes. Even for very high
rates, incorporating a weak quadratic nonlinearity is enough to account
for the saturation of the neurons’ firing rates. We also showed that our ap-
proach can be applied to networks with more complicated architectures,
such as the conductance-based model of a hypercolumn in V1 analyzed in
this work. The conditions for the stabilization of the homogeneous state can
be correctly predicted from the mean-field analytical solution of the corre-
sponding rate model. Furthermore, the profile of activity of the network
and the tuning curve of the synaptic conductances can be calculated. Our
results show that in order to obtain changes in input conductances that are
similar to those found experimentally, one has to assume that the space con-
stant of the excitatory feedback is much smaller than the space constant of
the inhibitory interactions. However, this conclusion may depend on our
assumption of interaction profiles, which are identical for excitatory and
inhibitory targets.

To extend our approach to the case of time-dependent inputs, we stud-
ied the response of the single neuron to noisy input that is modulated si-
nusoidally in time. We showed that this response can be described by a
rate model in which the neuron responds instantaneously to an effective
input, which is a filtered version of the actual one. This is similar to the
approach of Chance, du Lac, and Abbott (2001), who studied the responses
of spiking neurons to oscillating input currents. Our description is valid
provided that the input is sufficiently noisy to broaden resonances and that
its modulation is small compared to its average to avoid rate rectification.
Interestingly, if these assumptions are satisfied, we found that the neuron
essentially behaves like a linear device even if the modulation of the input is
substantial. This allowed us to derive a rate model that provides a good de-
scription for the dynamics of a homogeneous network of neurons receiving
a time-dependent input.

Our derivation of rate equations for conductance-based models can be
compared to the one suggested by Ermentrout (1994; see also Rinzel &
Frankel, 1992). Ermentrout derived a rate model in the limit where the
synaptic time constants are much longer than the time constants of the
currents involved in the generation of spikes, as well as in the interspike
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interval. In this case, the neuronal dynamics on the scale of the synaptic
time constants can be reduced to rate equations of the type of equation 7.1
in which the rate variables, r(t), represent the instantaneous activity of the
slow synapses. However, in Ermentrout’s approach, the firing rate f (t) is
given by an equation similar to equation 7.2 with ρinp ≡ rinp and ρ ≡ r.
This is in contrast to our approach, where ρinp and ρ are filtered versions
of rinp and r. The two approaches become equivalent in the limit of slow
varying input and slow synapses, that is, ω0 � 1/tinp, 1/τs where tinp is the
typical timescale over which the external input varies and τs is the synaptic
time constant of the faster synapses in the network. The parameter ω0 is the
resonance frequency.

Knight (1972a, 1972b) studied the response of integrate-and-fire neurons
to periodic input. He concluded that a resonant behavior occurred for input
modulation frequencies around the average firing rate of the neurons. He
also showed that white noise in the input broadens the resonance peak.
Similar results were obtained by Gerstner (2000) in the framework of spike
response models. This resonance has also been reported by Brunel, Chance,
Fourcaud, and Abbott (2001) and Fourcaud and Brunel (2002), who studied
analytically the firing response of a single integrate-and-fire neuron to a
periodic input with temporally correlated noise. Our results extend these
conclusions to conductance-based neurons. An interesting finding of this
work is that the resonance frequency of the rate response increases linearly
as a function of the mean output rate with a slope of one. It would be
interesting to derive this relationship as well as the other parameters of our
rate dynamics model from the underlying conductance-based dynamics.
In addition, applications of our approach to other single-cell conductance-
based models and to more complicated network architectures need to be
explored. For instance, the effect of slow potassium adaptation currents
should be taken into account. These currents are likely to contribute to the
high-pass filtering of the neuron as shown by Carandini, Fernec, Leonard,
and Movshon (1996) in the case of an oscillating injected current.

In this work, we used an A-current as a mechanism for the linearization of
the f-I curve. Other slow hyperpolarizing conductances might also achieve
the same effect (Ermentrout, 1998). In particular, slow potassium currents,
which are responsible for spike adaptation in many cortical cells, might
be alternative candidates. However, linear f-I curves are also observed in
cortical inhibitory cells, most of which do not show spike adaptation, but
they probably do possess an A-current.

Finally, we focused in this work on conductance-based network models
of point neurons. An interesting open question is whether an appropriate
rate model can also be derived for neurons with extended morphology. In
conclusion, our results open up possibilities for applications of rate models
to a range of problems in sensory and motor neuronal circuits in cortex as
well as in other structures with similar single-neuron properties. Apply-
ing the rate model to a concrete neuronal system requires knowledge of
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a relatively small number of experimentally measurable parameters that
characterize the f-I curves of the neurons in the system. In addition, the
rate model requires knowledge of the gross features of the underlying con-
nectivity pattern, as well as an estimate of the order of magnitude of the
associated synaptic conductances.

Appendix A: Model Neuron

This appendix provides the specifics for the equations of the model neu-
ron used here. The dynamics of our single-neuron model consists of the
following equations

Cm
dV
dt
= −IL − INa − IK − IA + Iapp. (A.1)

The leak current is given by IL = gL(V − EL). The sodium and the delayed
rectifier currents are described in a standard way: INa = ḡNam3∞h(V − ENa)

for the sodium current and IK = ḡKn4(V − EK) for the delayed rectifier
current. The gating variables x = h,n satisfy the relaxation equations:
dx/dt = (x∞ − x)/τx. The functions x∞, ( x = h,n,m), and τx are: x∞ =
αx/(αx+βx), and τx = φ/(αx+βx)where αm = −0.1(V+30)/(exp(−0.1(V+
30)) − 1), βm = 4 exp(−(V + 55)/18), αh = 0.07 exp(−(V + 44)/20), βh =
1/(exp(−0.1(V+14))+1), αn = −0.01(V+34)/(exp(−0.1(V+34))−1) and
βn = 0.125 exp(−(V + 44)/80). We have taken: φ = 0.1.

The A-current is IA = ḡAa3∞b(V−EK)with a∞ = 1/(exp(−(V+50)/20)+
1). The function b(t) satisfies db/dt = (b∞ − b)/τA with: b∞ = 1/(exp((V +
80)/6)+ 1). For simplicity, the time constant, τA, is voltage independent.

The other parameters of the model are: Cm = 1µF/cm2, ḡNa = 100
mS/cm2, ḡK = 40 mS/cm2. Unless specified otherwise, gL = 0.05 mS/cm2,
ḡA = 20 mS/cm2, and τA = 20 msec. The reversal potentials of the ionic and
synaptic currents are ENa = 55 mV, EK = −80 mV, EL = −65 mV, Ee = 0
mV, and Ein = −80 mV. The external current is Iapp (in µA/cm2).

Appendix B: Model of a Hypercolumn in V1: The Mean-Field Equations

B.1 The Instability of the Homogeneous State. For a homogeneous in-
put, a trivial solution to the fixed-point equation, equation 5.1, corresponds
to a state in which the responses of all the neurons are the same. However,
this homogeneous state can be unstable if the spatial modulation of the
interactions is sufficiently large. The condition for this instability can be de-
rived by solving equation 5.1 in the limit of a weakly heterogeneous input
fLGN(θ) as follows.

The Fourier expansion of fLGN is

fLGN(θ) =
∞∑

n=1

fn exp(2inθ), (B.1)
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where the coefficients fn are complex numbers. For weakly heterogeneous
inputs, all the coefficients but f0 are small. In the parameter regime where the
homogeneous state is stable, the response of the network to this input will
be weakly heterogeneous. Therefore, the Fourier expansion of the activity
profile is,

m(θ) =
∞∑

n=1

mn exp(2inθ), (B.2)

where all the coefficients but m0 are small. Substituting equations B.1 and
B.2 in equation 5.1 and computing the coefficients mn, n > 0 perturbatively,
one finds:

mn = JLGN fn
1− β Jn

, (B.3)

where Jn are the Fourier coefficients of the interactions.
The coefficient mn diverges if β Jn = 1. This divergence indicates an in-

stability of the homogeneous state. This instability induces a heterogeneous
profile of activity with n peaks.

The coefficients Jn can be computed from equation 5.2. This yields the
instability onset condition:

2β

(
Je

1−(−1)n exp(−π/2λe)

1+4n2λ2
e

+Jin
1−(−1)n exp(−π/2λin)

1+4n2λ2
in

)
=1. (B.4)

B.2 Mean-Field Equations for Profile of Activity. We are interested in
the case in which the LGN input is broadly tuned, 0 < ε < 1/2, and the
effect of the interactions is sufficiently strong to sharpen substantially the
response of the neurons. More specifically, we require that f (θ) = 0 for all
the neurons with POs such that |θ − θ0| > π/2. In this case, the solution to
equations 5.1 and 5.2 can be found analytically. Taking θ0 = 0, without loss
of generality, this solution has the form

f (θ)=A0+A1 cos(µ1θ)+A2 sin(µ2θ)+A3 cos(2θ) for |θ |<θc (B.5)

f (t) = 0 for θc < |θ | (B.6)

The angle θc is determined by

f (±θc) = 0. (B.7)

Substituting equation B.5 in equation 5.1, one finds that µ1 and µ2 are solu-
tions (real or imaginary) of the equation

∑
α=E,I

2Jα
1+ λ2

αx2 = 1, (B.8)
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and that the coefficients A0 and A3 are given by

A0 = J̄LGN fLGN(1− ε)− T
1− 2Je − 2Jin

(B.9)

A3 = J̄LGN fLGN

1− 2
(

µ1 Je

1+4µ2
1
+ µ2 Jin

1+4µ2
2

) . (B.10)

Finally, A1 and A2 are obtained from the two equations:

F(λα, µ,A) = 0 α = E, I, (B.11)

where, µ = (µ1, µ2), A = (A0,A1,A2,A3) and F is the function

F(x, µ,A) = A0 +
∑
i=1,3

Ai

1+ µix2 (cos(µiθc)− µix sin(µiθc)) (B.12)

with µ3 = 2 and the angle θc is determined by the condition

A0 + A1 cos(µ1θc)+ A2 sin(µ2θc)+ A3 cos(2θc) = 0. (B.13)

Appendix C: Rate Dynamics in a Neuronal Population with Uniform
Connectivity

By Fourier transforming equations 7.1, 7.2, and 6.3 (assuming that the firing
rates are always positive), we obtain for ω �= 0,

f̂ (ω) = β(Jinpρ̂inp + Jρ̂), (C.1)

where ρ̂(ω) = B(ω)r̂(ω), r̂(ω) = L(ω) f̂ (ω), ρ̂inp(ω) = B(ω)r̂inp(ω), r̂inp(ω) =
L(ω) f̂ inp(ω). The low-pass filter L(ω) and bandpass filter B(ω) are given by
L(ω) = 1/1+ iωτe and B(ω) = (1+ iaω/ω0)/(1+ iw/ω0 − ω2/ω2

0).
Putting the above relations in equation C.1 and solving for f̂ (ω) gives

the transfer function of the network,

f̂ (ω) = β JinpB(ω)L(ω)
1− β JB(ω)L(ω)

f̂ inp(ω), (C.2)

which can be used to predict the time-dependent rate response.
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