
A Brief Review of Practical Techniques for Single-Cell

Biophysical Computation Within the Framework of a Neuronal

Network Model for the Rat Hippocampal Formation

Nan Xiao

August 9, 2005

Motivation

From a biophysical standpoint, the investigation of network behavior in the rat hip-
pocampal formation necessitates the use of spatially detailed single-cell models. Pyrami-
dal cells and interneurons of the hippocampal region are morphologically complex, not
only superficially, in the sense that microscopy reveals the presence of elaborate dendritic
trees, but also because evidence strongly points to the nonuniform distribution of ion
channels across these cells. With regard to synaptic connectivity, the function of a den-
dritic tree is apparent when it is observed that the axonal projections of the presynaptic
neighbors of a given hippocampal neuron attach to many different locations on the den-
dritic tree. As such, it is not unwise to hypothesize that the morphology of single cells
plays an important role in neuronal network function, justifying the use of computational
models that take into account morphological complexity.

Nonlinear Cable Equation

The use of spatially detailed models of single hippocampal cells invokes cable theory.
First used to describe transmission along underwater telegraph lines, cable theory is ap-
plied to neurons to describe the propagation of membrane potential along axonal and
dendritic processes. For models of hippocampal cells, it is necessary to use the nonlinear
cable equation. Assuming that dendritic segments are represented on a one-dimensional
domain and that the dendrite contains non-ohmic active conductances, the balance of
axial and longitudinal currents along every point of the dendritic segment gives rise to
the nonlinear cable equation:

1

2Raa(x)

∂

∂x

[

a(x)2∂V

∂x
(x, t)

]

= Cm
∂V

∂t
(x, t) + Imembrane(V) + Isynaptic(V) + Istimulus (1)

The two ends of the dendritic segment are sealed. There is no current flow at either end.

∂V

∂x
(x0, t) =

∂V

∂x
(x`, t) = 0

1

At time t = t0 the membrane potential distribution is described by ψ(x).

∂V

∂t
(x, t0) = ψ(x)

The use of a linear spatial domain applies to arbitrarily branched neurons as well: in-
tuitively, each branch in the neuron is assigned a specific interval. Specifically, a set of
points xi (i = 0, 1, 2, 3, . . . , `) is defined such that x0 = 0 < x1 < x2 < x3 < . . . < x`. The
spatial domain for branch i is the set of points on the interval [xi, xi+1).

Branching

Branch Types

For strictly computational purposes, there exist only two types of branches. A non-
terminal branch is connected to other branches at both ends, whereas a terminal branch
is connected to other branches at less than two ends. Furthermore, a branch is either
an axonal segment or a dendritic segment depending on the ionic conductances that are
defined on its spatial domain. The soma, though represented by a point, counts as one
branch. Thus, every branch except for the soma has one parent branch.

Branch Ordering

Branch ordering is done in the manner of the Hines method [4]. First, the soma is
represented by the point x`. The branches are then ordered by decreasing “depth” in the
branch tree relative to the soma. Specifically, the sets of points representing the branches
directly physiologically conected to the soma are assigned depth ‘1’. The sets of points
representing the branches that connect to branches of depth k are assigned depth k + 1
(k = 1, . . . , maxd), where maxd is the maximum possible depth in the branching trees
of a neuron. Naturally, the terminal branches will be assigned with the largest depth
numbers. The branches are now ordered by their assigned depth numbers.

domain for branch i := [xi, xi+1)

where

i =

{

0, . . . , nmaxd − 1 for the nmaxd branches of depth maxd
∑k−1

q=0 nmaxd−q, . . . ,
∑k

q=0 nmaxd−q for the nmaxd−k branches of depth maxd − k

and k = 1, . . . , maxd− 1

The specific numbering of branches within a given depth is unimportant, only that the
branches of higher depth are indexed ahead (smaller index number) of branches of lower
depth. The purpose of this ordering method is made clear when the spatial domains are
discretized.

2

The boundary conditions are now such that if branch j is a terminal branch in a neuron
with more than one branch, and if the spatial domain of the terminal branch is defined
by [xj , xj,start], then

∂v

∂x
(xj , t) = 0 j = 1, . . . , nterminal branch

In the general, the soma is sealed

∂v

∂x
(x`, t) = 0 j = 1, . . . , nterminal branch

For all branches, xj,start represents the end of the branch that is connected to the parent
branch.

Ionic Conductances

Neurons of the hippocampal formation contain many different voltage-gated ion chan-
nels aside. Apart from the standard leak current, these active currents are modeled in
an ensemble fashion through the use of voltage-dependent terms in the cable equation
describing current flow elicited by the specific ion channel types. The inclusion of these
currents gives the cable equation nonlinearity. Active currents involve the voltage-gated
diffusion of Na+, K+, and Ca2+ ions.

Imembrane = Ileak + Iactive

Iactive =
∑

i

I{Na+}i
+

∑

j

I{K+}j
+

∑

k

I{Ca2+}k

The leakage conductance is represented by an ohmic conductance whereas the active
currents use the Hodgkin and Huxley formalism.

Ileak = Gleak[V (x, t) −Eleak]

I{X}x
= G{X}x

M{X}x
(t)pN{X}x

(t)q[V (x, t) − E{X}x
]

I{X}x
denotes an active current of type x involving ions of element X. E represents the

reversal potential of the particular channel. M and N respectively are the activation
and inactivation variables for the particular active current. They represent a lumped
probability of the activation and inactivation of the particular ion channel. In accordance
with the specific biophysical properties of the channel in question, the particular active
current may lack an inactivation variable. The activation and inactivation variables are
voltage-dependent in the sense that

dM{X}x
(t)

dt
= Rate of Opening − Rate of Closing

dM{X}x
(t)

dt
= αM{X}x

(V)[1 −M{X}x
(t)] − βM{X}x

(V)M{X}x
(t)

3

The rate functions α(V) and β(V) are voltage-dependent functions governing the rate of
change of the activation variable.

Synaptic Conductances

Synaptic currents at specific locations on the simulated neuron model the effect of
synaptic connections from neighboring cells. The synaptic current takes the form

Isynaptic =
∑

i

∑

j

gsyni
δ(x− xsyni,j

)[V (x, t) − Esyni
]

A synaptic current of type i is present at spatial location j on the neuron. The function
gsyn depends on the complexity of the synaptic model.

Alpha function condunctance

A simple ‘α function’ can be used for gsyn(t) to represent the non-NMDA synaptic inputs
mediated by the mossy fibers (koch).

gsyn(t) = C t e−t/tpeak

Where C is a constant =
gpeake

tpeak
so that gsyn(tpeak) = gpeak.

Graded synapse

In reality, release of synaptic vessicles is related to the potential in the presynaptic mem-
brane. The simplest approach to incorporated dependency of the presynaptic potential
results in a ‘graded’ synaptic conductance that obeys the relationship

dgsyn

dt
(t) =

gsyn∞
(v) − gsyn(t)

τ

General biophysical synapse

More complicated synaptic models may include differential equations describing neu-
rotransmitter release. Characteristics of short-term potentiation can be captured in a
general three-step model

• Depolarization of the presynaptic membrane induces a Ca2+ current in the presy-
naptic region, causing a rise in the concentration of Ca2+.

• Ca binds to receptors and neurotransmitter is released at a rate determined by the
opening and closing rates of the bound receptors.

4

• Neurotransmitter, in turn, binds to receptors (ion channels) on the postsynaptic
region; the synaptic conductance gsyn is therefore given by

gsyn(t) = γo(t)

where γ is the maximum single-postsynaptic-channel conductance and o(t) is the
number of open channels. A straightfoward system of the differential equations de-
scribes the Ca2+, neurotransmitter, presynaptic receptors and postsynaptic channels.

Spatial Discretization

It is most feasible to solve the nonlinear cable equation with nonuniform coefficients
numerically. Linearization of the active conductances and discretization of the spatial do-
main gives rise to a system of linear ordinary differential equations, which may be solved
numerically through an appropriate time-stepping method. Spatial discretization creates
a finite-dimensional spatial mesh; solutions to the discretized cable equation are therefore
finite-dimensional vectors.

Finite differences: central space method

The popular NEURON neurosimulator uses the method of finite differences for spatial
discretization, where a second difference matrix is substituted for the Laplacian operator.
The cable equation becomes

1

2Ra

B~V = Cm
d~V

dt
(t) + ~Imembrane + ~Isynaptic + ~Istimulus (2)

t > t0

d~V

dt
(t0) = ~ψ t = t0

This finite difference method (central-space) has second-order accuracy (O(∆x2)) and im-
poses a regular mesh upon the spatial domain.

Finite elements: Galerkin method

On the other hand, the finite elements method naturally handles irregular spatial
meshes. Specifically, the Galerkin method is used, with a finite-dimensional subspace
of continuous linear piecewise polynomials spanned by ‘hat’ functions [3] (Appendix 1).
The finite elements method also handles the nonuniform coefficients in the cable equation
in a more mathematically rigorous fashion. This method is second-order accurate. The
discretized cable equations becomes

~Istimulus + ~c = CmM
d~V

dt
(t) +

[

C + L +
1

2Ra
K

]

~V (t) (3)

5

t > t0

d~V

dt
(t0) = ~ψ t = t0

Efficiency

An efficient implementation of either method would have a computation time that is
practically independent of the number of the branches in the simulated neuron. Compu-
tation time would vary on the order of 1/∆x per time step. However, in the case of the
finite elements method, the assembly of the matrices for the ODE system includes many
more numerical evaluations, making the finite elements method slower but still on the
order of 1/∆x per time step.

Time-stepping

To numerically integrate the stiff system of ODEs, an unconditionally stable time-
stepping method should be used. In the case of a passive neuron, the linear cable equation
is

1

2Ra
B~V = Cm

d~V

dt
(x, t) + ~Gl(~V (t) − El)

Integrating gives

∫ tf

t

d~V

dt
dt =

∫ tf

t

1

Cm

[

1

2Ra
B~V (t) − ~Gl(~V (t) − El)

]

dt

~V (tf) = ~V (t) +

∫ tf

t

1

Cm

[

1

2Ra
B~V (t) − ~Gl(~V (t) − El)

]

dt

Backward Euler

The most simple appropriate time-stepping method is the fully implicit backward Euler
scheme, in which

~V (t+ ∆t) = ~V (t) +
∆t

Cm

[

1

2Ra

B~V (t+ ∆t) − ~Gl(~V (t+ ∆t) −El)

]

This method is first-order accurate (O(∆t)) and stable for all ∆t.

Crank-Nicolson

For second-order accuracy (O(∆t)2) as well as unconditional stability, the Crank-
Nicolson method (half-implicit Euler) is very efficient.

6

~V (t+ ∆t) = ~V (t) +
∆t

2Cm

[(

1

2Ra
B~V (t+ ∆t) − ~Gl(~V (t+ ∆t) − El)

)

+

(

1

2Ra
B~V (t) − ~Gl(~V (t) − El)

)]

Since this method is essentially the average of the forward and backward Euler methods,
a shortcut to reduce the number of numerical evaluations is often used. The result is a
two-step process that uses half-time steps. Essentially, backward Euler is performed first
and forward Euler is performed second (Appendix 2).

Linearization

The nonlinear terms (active currents) in the cable equation depend upon membrane
potential through the voltage-dependent rate functions. As such, it suffices to allow the
rate functions to depend upon the membrane potential calculated at the previous time
step. The ODE describing an active variable becomes

dM(t)

dt
= αM(V (t))[1 −M(t)] − βM(V (t))M(t)

Numerical Integration through backward Euler gives

M(t+ ∆t) = M(t) +

∫ t+∆t

t

[

αM(V (t))[1 −M(t)] − βM(V (t))M(t)

]

dt

M(t+ ∆t) = M(t) + ∆t

[

αM(V (t))[1 −M(t+ ∆t)] − βM(V (t))M(t+ ∆t)

]

Essentially, the activation variables are computed prior to solving for the membrane po-
tential for the current point in time.

Branch Ordering Revisited

The numerical methods for spatial discretization essentially produce a matrix equation

A~x = ~b

to be solved for ~x at every time step. A not only contains numerical information; the
neuronal morphology is encoded in the sparsity pattern. For the simulated single neurons,
A is always symmetric and nearly tridiagonal. If the neuron consists of a soma and a
straight fiber A will be tridiagonal. On the other hand, if each discretized compartment
is a branch itself, A will hardly be tridiagonal. Though, if the Hines reordering method
is used, A for the latter case will be essentially tridiagonal. Given the special nature of

7

A, it is inefficient to use an expensive general Guassian elimination algorithm to solve
for ~x, especially if the Hines ordering is used, in which case a barely modified tridiagonal
solver, whose computation time scales proportional to the size of A, is sufficient. This
example, the discretized three-branch (technically four, including the soma) fork neuron,
illustrates the importance of the Hines ordering method.

An intuitive method of numbering the nodes assigns increasing branch numbers moving
away from the soma like so

The left-hand-side matrix that corresponds to this numbering scheme is

A =

A1,1 A1,2 0 0 0 0 0 0 0
A2,1 A2,2 A2,3 0 0 0 0 0 0
0 A3,2 A3,3 A3,4 0 0 A3,7 0 0
0 0 A4,3 A4,4 A4,5 0 0 0 0
0 0 0 A5,4 A5,5 A5,6 0 0 0
0 0 0 0 A6,5 A6,6 0 0 0
0 0 A7,3 0 0 0 A7,7 A7,8 0
0 0 0 0 0 0 A8,7 A8,8 A8,9

0 0 0 0 0 0 0 A9,8 A9,9

A one-step-per-node diagonalizing algorithm used to eliminate the lower diagonal elements
will run into problems at A7,7 where unwanted fill-in of entry A7,4 will occur, such that a
more general elimination algorithm must be used. Consider a rather common pyramidal
neuron with two large dendritic trees, ` branches in total, and solely bifurcating branches.
Any numbering scheme that assigns higher branch numbers to branches that are “further
away” (in terms of depth as defined earlier) will encounter at least `/2 − 1 entries in
matrix A where a general elimination algorithm must be used. This dramatically lowers

8

the overall efficiency of solving for ~x.

The Hines method assigns larger branch indices to branches “closer” to the soma.
Furthermore, the nodes within each branch end up numbered in increasing order moving
closer to the branch/parent node.

This ensures that any branch in the neuron is only coupled to one other branch, which
has a larger branch index. As such, A looks like

A =

A1,1 A1,2 0 0 0 0 0 0 0
A2,1 A2,2 A2,3 0 0 0 0 0 0
0 A3,2 A3,3 0 0 0 A3,7 0 0
0 0 0 A4,4 A4,5 0 0 0 0
0 0 0 A5,4 A5,5 A5,6 0 0 0
0 0 0 0 A6,5 A6,6 A6,7 0 0
0 0 A7,3 0 0 A7,6 A7,7 A7,8 0
0 0 0 0 0 0 A8,7 A8,8 A8,9

0 0 0 0 0 0 0 A9,8 A9,9

A slightly modified tridiagonal solver is sufficient for the Hines matrix, which is essentially
a tridiagonal matrix. Fill-in problems can now be avoided.

Neuronal Networks

In modelling networks of neurons, it is only necessary to change the spatial domain to
reflect the presence of two cells. The Hines ordering is kept for individual cells. When

descritized and simplified, again the matrix equation A~x = ~b must be solved at each time
step. However

A =

A1

A2

. . .
ANC

where Ai represents the left-hand-side matrix at the current time step for cell i and NC
is the number of cells. Similarly for the right-hand-side vector at the current time step,

9

~b =

~b1
~b2
...

~bNC

This simple method is valid when no neurons in the network communicate through eletrical
synapses, where current directly passes from cell to cell.

10

Appendix 1: Finite Elements Method for Branched Neurons

Simple Tapered Passive Fiber

The tapered cable equation [2] on a linear domain (x ∈ [0, `])

1

2Ra

∂

∂x

(

a(x)2
∂v

∂x
(x, t)

)

= a(x)

√

1 +

(

da

dx
(x)

)2[

Cm

∂v

∂t
(x, t) +Gm(v(x, t) − El)

]

(4)

v(x, to) = ψ(x)

∂v

∂x
(0, t) =

Ra

πa2(0)
io(t) t > to

∂v

∂x
(`, t) = 0 t > to

Multiply by a test function in Ṽ = C2[0, `] and integrate over the domain

∫ `

0

1

2Ra

∂

∂x

(

a(x)2
∂v

∂x
(x, t)

)

u(x) dx

=

∫ `

0

a(x)

√

1 +

(

da

dx
(x)

)2[

Cm

∂v

∂t
(x, t) +Gm(v(x, t) − El)

]

u(x) dx

Integrate by parts to get the weak form:

1

2Ra

[

a(x)2u(x)
∂v

∂x
(x, t)

]`

0

−
1

2Ra

∫ `

0

a(x)2
∂v

∂x
(x, t)

du

dx
(x) dx

=

∫ `

0

a(x)

√

1 +

(

da

dx
(x)

)2[

Cm

∂v

∂t
(x, t) +Gm(v(x, t) − El)

]

u(x) dx

Apply boundary conditions to get:

u(o)

2π
io(t) −

1

2Ra

∫ `

0

a(x)2
∂v

∂x
(x, t)

du

dx
(x) dx

=

∫ `

0

a(x)

√

1 +

(

da

dx
(x)

)2[

Cm

∂v

∂t
(x, t) +Gm(v(x, t) − El)

]

u(x) dx

Rearrange:

u(o)

2π
io(t) −

1

2Ra

∫ `

0

a(x)2
∂v

∂x
(x, t)

du

dx
(x) dx+ El

∫ `

0

Gm(x)a(x)u(x)

√

1 +

(

da

dx
(x)

)2

dx

= Cm

∫ `

0

a(x)u(x)
∂v

∂t
(x, t)

√

1 +

(

da

dx
(x)

)2

dx +

∫ `

0

Gm(x)a(x)u(x)v(x, t)

√

1 +

(

da

dx
(x)

)2

dx

11

A solution v(x, t) that satisfies the weak form for every u(x, t) ∈ Ṽ satisfies the PDE. To find an approxi-
mation to the solution, a finite dimensional subspace S̃n = {p : [0, `] → R : p is piecewise linear/continuous} =
span{φ0, φ1, ..., φN} is defined. A regular mesh (0 < x0 < x1 < x2 < ... < xN = `) with N + 1 nodes
separated by intervals of length h is used to spatially discretize the domain.

The φi are ‘hat functions’ defined by

φ(x) =

1/h(x− (i− 1)h) if xi−1 < x < xi,

−1/h(x− (i+ 1)h) if xi ≤ x < xi+1,

0 otherwise.

(5)

Membrane potential and dendritic radius are linear combinations of the hat functions

vn(t, x) =

N
∑

i=0

vi(t)φi(x)

an(x) =

N
∑

i=0

aiφi(x)

Membrane leakage conductance is represented by piecewise constants

Gm(x) =

N−1
∑

i=0

Gmj
χj(x)

It now suffices to find vn(t) that satisfies the weak form for every u(x, t) ∈ S̃n. Specifically, vn(t) has to
satisfy:

φj(o)

2π
io(t) −

1

2Ra

∫ `

0

a(x)2
[N

∑

i=0

vi(t)
dφ

dx
(x)

]

dφj

dx
(x) dx

+El

∫ `

0

Gm(x)a(x)φj(x)

√

1 +

(

da

dx
(x)

)2

dx

= Cm

∫ `

0

a(x)φj(x)

[N
∑

i=0

dvi

dt
(t)φi(x)

]

√

1 +

(

da

dx
(x)

)2

dx

+

∫ `

0

Gm(x)a(x)φj(x)

[N
∑

i=0

vi(t)φi(x)

]

√

1 +

(

da

dx
(x)

)2

dx

j = 0, 1, 2, ..., N

Rearranging:

φj(o)

2π
io(t) −

N
∑

i=0

vi(t)
1

2Ra

∫ `

0

[N
∑

i=0

aiφi(x)

]2
dφi

dx
(x)

dφj

dx
(x) dx

+El

∫ `

0

Gm(x)

[N
∑

i=0

aiφi(x)

]

φj(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

= Cm

N
∑

i=0

dvi

dt
(t)

∫ `

0

[N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

12

+
N

∑

i=0

vi(t)

∫ `

0

[N−1
∑

i=0

Gmj
χj

][N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

j = 0, 1, 2, ..., N

Define the matrices M,K,L:

Kij =

∫ `

0

[N
∑

i=0

aiφi(x)

]2
dφi

dx
(x)

dφj

dx
(x)

Mij =

∫ `

0

[N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

Lij =

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

and the battery vector ~b

bj = El

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

Evaluating the integrals we get tridiagonal matrices:

Main diagonal:
j = i = 0

Kij =
1

3h
(a2

0 + a0a1 + a2
1)

Mij =
1

12

√

h2 + (a0 − a1)2(3a0 + a1)

Lij =
Gmi

12

√

h2 + (a0 − a1)2(3a0 + a1)

bi =
ElGmi

12

√

h2 + (a0 − a1)2(4a0 + 2a1)

0 < j = i < N

Kij =
1

3h
(2a2

i + a2
i−1 + a2

i+1 + aiai−1 + aiai+1)

Mij =
1

12

√

h2 + (ai−1 − ai)2(ai−1 + 3ai) +
1

12

√

h2 + (ai − ai+1)2(3ai + ai+1)

Lij =
Gmi−1

12

√

h2 + (ai−1 − ai)2(ai−1 + 3ai) +
Gm

12

√

h2 + (ai − ai+1)2(3ai + ai+1)

bi =
ElGmi−1

12

√

h2 + (ai−1 − ai)2(2ai−1 + 4ai) +
ElGm

12

√

h2 + (ai − ai+1)2(4ai + 2ai+1)

13

j = i = N

Kij =
1

3h
(a2

i + aiai−1 + a2
i−1)

Mij =
1

12

√

h2 + (ai − ai−1)2(3ai + ai−1)

Lij =
Gmi−1

12

√

h2 + (ai − ai−1)2(3ai + ai−1)

bi =
ElGmi−1

12

√

h2 + (ai − ai−1)2(4ai + 2ai−1)

Off diagonal:
j = i+ 1

Kij = −
1

3h
(a2

i + aiai+1 + a2
i+1)

Mij =
1

12
(ai + ai+1)

√

h2 + (ai − ai+1)2

Lij =
Gmi

12
(ai + ai+1)

√

h2 + (ai − ai+1)2

Solve the linear system numerically

io
2π

~eo +~b = CmM
d~v

dt
(t) +

[

L +
1

2Ra

K

]

~v(t)

with backward Euler time-stepping:

[

CmM + ∆t(L +
1

2Ra

K)

]

~vj+1 = CmM~vj +

[

~b+
io
2π
eo

]

∆t

Standard units:

Cm is in units of
µF

cm2

Gm is in units of
mS

cm2

Ra is in units of kΩ.cm

The elements of the matrices M and K are in m

The elements of the matrix L are in m.mS

14

Tapered fiber with soma

The ‘left’ boundary condition is changed to accomodate a soma of surface area As

∂v

∂x
(0, t) =

RaAs

πa2

[

Cm

∂v

∂t
(0, t) +Gs(v(0, t) − El)

]

−
Raio(t)

πa2

The weak form becomes

u(o)

[

io(t)

2π
−As

(

Cm

∂v

∂t
(0, t) +Gs(v(0, t) − El)

)]

−
1

2Ra

∫ `

0

a(x)2
∂v

∂x
(x, t)

du

dx
(x) dx

+El

∫ `

0

Gm(x)a(x)u(x)

√

1 +

(

da

dx
(x)

)2

dx

= Cm

∫ `

0

a(x)u(x)
dv

dt
(x, t)

√

1 +

(

da

dx
(x)

)2

dx+

∫ `

0

Gm(x)a(x)u(x)v(x, t)

√

1 +

(

da

dx
(x)

)2

dx

The finite element method yields the system

φj(o)

[

io(t)

2π
−As

(

Cm

dv0
dt

(t) +Gs(v0 − El)

)]

−

N
∑

i=0

vi(t)
1

2Ra

∫ `

0

[N
∑

i=0

aiφi(x)

]2
dφi

dx
(x)

dφj

dx
(x) dx

+El

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

= Cm

N
∑

i=0

dvi

dt
(t)

∫ `

0

[N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

+

N
∑

i=0

vi(t)

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)φi0(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

j = 0, 1, 2, ..., N

Rearranging, we have

φj(o)
io(t)

2π
−

N
∑

i=0

vi(t)
1

2Ra

∫ `

0

[N
∑

i=0

aiφi(x)

]2
dφi

dx
(x)

dφj

dx
(x) dx

φj(0)AsGsEl + El

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

= AsCm

dv0
dt

(t) + Cm

N
∑

i=0

dvi

dt
(t)

∫ `

0

[N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

+AsGsv0 +

N
∑

i=0

vi(t)

∫ `

0

[N−1
∑

i=0

Gmi
χi

][N
∑

i=0

aiφi(x)

]

φj(x)φi(x)

√

√

√

√1 +

[N
∑

i=0

ai

dφi

dx
(x)

]2

dx

j = 0, 1, 2, ..., N

15

M and L are altered to reflect the addition of the soma

M0,0 = M0,0 +As

L0,0 = L0,0 +AsGs

~b0 = ~b0 +AsGsEl

16

Branched neuron

Consider the case of the forked branch which consists of a root and two daughter branches. The finite
element discretization requires the definition of the branched hat function. N0 denotes the final node on
the mesh of the root branch and b denotes the index of the daughter branch; there is a regular mesh for
each branch:

Root branch : x0,0 < x0,1 < . . . < x0,N0

Daughter branch : xb,0 = x0,N0
< xb,1 < . . . < xb,N1

The branched hat function is therefore:

φbranch(x) =

φ0,N0
= 1/h(x− (N0 − 1)h) if x0,N0−1 < x < x0,N0

on root branch,

φb,0 = −1/h(x− (N0 + 1)h) if x0,N0
≤ x < xb,1 on daughter branches,

0 otherwise.

(6)

The rest of the hat functions remain the same
{

φ0,i(x) = φi(x) i = 0, . . . , N0 − 1,

φb,i(x) = φi(x) i = 1, . . . , Nb.

At the branch point, χ(x) is

χbranch(x)

χ0,N0−1(x) = 1 if x0,N0−1 < x < x0,N0
on root branch,

χb,0(x) = 1 if x0,N0
≤ x < xb,1 on daughter branches,

0 otherwise

The rest of the χ(x) remain the same

{

χ0,i(x) = χi(x) i = 0, . . . , N0 − 2,

χb,i(x) = χi(x) i = 1, . . . , Nb − 1.

17

At the branch node on the discretized mesh, we now utilize the branched hat function

v0,N0
(t)

2Ra

Z N0h

(N0−1)h

„

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

«2
dφ0,N0

dx
(x)

dφj

dx
(x) dx

+
v0,N0

(t)

2Ra

Z h

0

„

a0,N0
φ1,0(x) + a1,1φ1,1(x)

«2
dφ1,0

dx
(x)

dφj

dx
(x) dx

+
v0,N0

(t)

2Ra

Z h

0

„

a0,N0
φ2,0(x) + a2,1φ2,1(x)

«2
dφ2,0

dx
(x)

dφj

dx
(x) dx

+El

Z N0h

(N0−1)h

Gm0,N0−1
χ0,N0−1φj(x)

„

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

«

. . .

s

1 +

„

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

«2

dx

El

Z h

0

Gm1,0χ1,0φj(x)

„

a0,N0
φ1,0(x) + a1,1φ1,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

«2

dx

+El

Z h

0

Gm2,0χ2,0φj(x)

„

a0,N0
φ2,0(x) + a2,1φ2,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

«2

dx

= Cm

dv0,N0
(t)

dt
(t)

Z N0h

(N0−1)h

φj(x)φ0,N0
(x)

„

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

«

. . .

. . .

s

1 +

„

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

«2

dx

+Cm

dv0,N0
(t)

dt
(t)

Z h

0

φj(x)φ0,N0
(x)

„

a0,N0
φ1,0(x) + a1,1φ1,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

«2

dx

+Cm

dv0,N0
(t)

dt
(t)

Z h

0

φj(x)φ0,N0
(x)

„

a0,N0
φ2,0(x) + a2,1φ2,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

«2

dx

+v0,N0
(t)

Z N0h

(N0−1)h

Gm0,N0−1
χ0,N0−1φj(x)φ0,N0

(x)

„

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

«

. . .

. . .

s

1 +

„

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

«2

dx

+v0,N0
(t)

Z h

0

Gm1,0χ1,0φj(x)φ1,0(x)

„

a0,N0
φ1,0(x) + a1,1φ1,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

«2

dx

+v0,N0
(t)

Z h

0

Gm2,0χ2,0φj(x)φ2,0(x)

„

a0,N0
φ2,0(x) + a2,1φ2,1(x)

«

. . .

. . .

s

1 +

„

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

«2

dx

j = 0, 1, 2, ..., N

18

Redefine M,K,L to account for the presence of the branched fiber

Kij =

∫ N0h

(N0−1)h

(

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

)2
dφ0,N0

dx
(x)

dφj

dx
(x) dx

+

∫ h

0

(

a0,N0
φ1,0(x) + a1,1φ1,1(x)

)2
dφ1,0

dx
(x)

dφj

dx
(x) dx

+

∫ h

0

(

a0,N0
φ2,0(x) + a2,1φ2,1(x)

)2
dφ2,0

dx
(x)

dφj

dx
(x) dx

Mij =

∫ N0h

(N0−1)h

φj(x)φ0,N0
(x)

(

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

)

. . .

. . .

√

1 +

(

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

)2

dx

+

∫ h

0

φj(x)φ0,N0
(x)

(

a0,N0
φ1,0(x) + a1,1φ1,1(x)

)

√

1 +

(

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

)2

dx

+

∫ h

0

φj(x)φ0,N0
(x)

(

a0,N0
φ2,0(x) + a2,1φ2,1(x)

)

√

1 +

(

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

)2

dx

Lij =

∫ N0h

(N0−1)h

Gm0,N0−1
χ0,N0−1φj(x)φ0,N0

(x)

(

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

)

. . .

. . .

√

1 +

(

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

)2

dx

+

∫ h

0

Gm1,0
χ1,0φj(x)φ1,0(x)

(

a0,N0
φ1,0(x) + a1,1φ1,1(x)

)

. . .

. . .

√

1 +

(

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

)2

dx

+

∫ h

0

Gm2,0
χ2,0φj(x)φ2,0(x)

(

a0,N0
φ2,0(x) + a2,1φ2,1(x)

)

. . .

. . .

√

1 +

(

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

)2

dx

~bj = El

∫ N0h

(N0−1)h

Gm0,N0−1
χ0,N0−1φj(x)

(

a0,N0−1φ0,N0−1(x) + a0,N0
φ0,N0

(x)

)

. . .

. . .

√

1 +

(

a0,N0−1
dφ0,N0−1

dx
(x) + a0,N0

dφ0,N0

dx
(x)

)2

dx

19

+El

∫ h

0

Gm1,0
χ1,0φj(x)

(

a0,N0
φ1,0(x) + a1,1φ1,1(x)

)

. . .

. . .

√

1 +

(

a0,N0

dφ1,0

dx
(x) + a1,1

dφ1,1

dx
(x)

)2

dx

+El

∫ h

0

Gm2,0
χ2,0φj(x)

(

a0,N0
φ2,0(x) + a2,1φ2,1(x)

)

. . .

. . .

√

1 +

(

a0,N0

dφ2,0

dx
(x) + a2,1

dφ2,1

dx
(x)

)2

dx

Evaluate the integrals

i = j = N0 at the branch point

Kij =
1

3h

[

(3a2
0,N0

+ a2
0,N0−1 + a2

1,1 + a2
2,1) + a0,N0

(a0,N0−1 + a1,1 + a2,1)

]

Mij =
1

12

[

(a0,N0−1 + 3a0,N0
)
√

h2 + (a0,N0−1 − a0,N0
)2 + (3a0,N0

+ a1,1)
√

h2 + (a0,N0
− a1,1)2

+(3a0,N0
+ a2,1)

√

h2 + (a0,N0
− a2,1)2

]

Lij =
1

12

[

Gm0,N0−1
(a0,N0−1+3a0,N0

)
√

h2 + (a0,N0−1 − a0,N0
)2+Gm1,1

(3a0,N0
+a1,1)

√

h2 + (a0,N0
− a1,1)2

+Gm2,1
(3a0,N0

+ a2,1)
√

h2 + (a0,N0
− a2,1)2

]

~bi =
El

12

[

Gm0,N0−1
(2a0,N0−1+4a0,N0

)
√

h2 + (a0,N0−1 − a0,N0
)2+Gm1,1

(4a0,N0
+2a1,1)

√

h2 + (a0,N0
− a1,1)2

+Gm2,1
(4a0,N0

+ 2a2,1)
√

h2 + (a0,N0
− a2,1)2

]

j = 1 on daughter branch 1

Kij = −
1

3h
(a2

N0
+ aN0

a1,1 + a2
1,1)

Mij =
1

12
(aN0

+ a1,1)
√

h2 + (aN0
− a1,1)2

Lij =
Gm1,1

12
(aN0

+ a1,1)
√

h2 + (aN0
− a1,1)2

j = 1 on daughter branch 2

Kij = −
1

3h
(a2

N0
+ aN0

a2,1 + a2
2,1)

20

Mij =
1

12
(aN0

+ a2,1)
√

h2 + (aN0
− a2,1)2

Lij =
Gm1,1

12
(aN0

+ a2,1)
√

h2 + (aN0
− a2,1)2

21

Appendix B: Time Stepping

Efficient half-implicit Euler method

The Crank-Nicolson method is equivalent to performing two Euler integral approxima-
tions using a ‘half’ time step.

Implicit step from t to t+ ∆t/2

~V (t+ ∆t/2) = ~V (t) +
∆t/2

Cm

[

1

2Ra
B~V (t+ ∆t/2) − ~Gl(~V (t+ ∆t/2) −El)

]

Explicit step from t+ ∆t/2 to t+ ∆t

~V (t+ ∆t) = ~V (t+ ∆t/2) +
∆t/2

Cm

[

1

2Ra

B~V (t+ ∆t/2) − ~Gl(~V (t+ ∆t/2) − El)

]

Combining the previous two equations gives

~V (t+ ∆t) = ~V (t) +
∆t

2Cm

[

1

Ra

B~V (t+ ∆t/2) − ~Gl(2~V (t+ ∆t/2) − 2El)

]

The full Crank-Nicolson rewritten is

~V (t+ ∆t) = ~V (t) +
∆t

2Cm

[

1

2Ra

B

(

~V (t+ ∆t) + ~V (t)

)

− ~Gl

(

~V (t+ ∆t) + ~V (t) − 2El

)]

Comparing the previous two equations gives a simple explicit expression to step from
t+ ∆t/2 to t+ ∆t

2V (t+ ∆t/2) = V (t+ ∆t) + V (t)

⇒ V (t+ ∆t) = V (t) + 2V (t+ ∆t/2)

This is also obvious from realizing Crank-Nicolson takes the average of the two integral
approximations.

22

References

[1] S. Cox. The Synapse. (www.caam.rice.edu/˜caam415) 2005.

[2] S. Cox; J. Raol. Recovering the passive properties of tapered dendrites from single
and dual potential recordings. Mathematical Biosciences 190 (2004) 9-37.

[3] Gockenbach, M. Partial Differential Equations: Analytical and Numerical Methods.
SIAM, 2002.

[4] Hines, M. Efficient Computation of Branched Nerve Equations. Int. J. Bio-Medical
Computing (15) (1984) 69-76.

[5] Koch, C. Biophysics of Computation: Information Processing in Single Neurons. Ox-
ford University Press, 1999.

[6] Traub, R.; Miles, R. Neuronal Networks of the Hippocampus. Cambridge University
Press, 1991.

23

