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1019-10 nheurons

Each neuron has 103-10% synaptic
connections




Neuron diversity
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Circuit diagram of macaque visual areas

Felleman and Van Essen, 1991
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Figure 2.1 Levels of organization in the nervous system, as characterized by Gordon Shepherd
(1968a).



Difficult question:

How to model the brain?



Simulating the brain bottom-up

Model neocortical microcircuit



What?

Why?



Why do we have a brain?

Essential function: using sensory
information to guide behavior




Top-down view: Start with behavior

Mental states

mapping?

Neural states




Goal: to understand the relationship between
neural and mental states in quantitative terms

Approach: normative/optimality: what should
the brain be doing? = is it really doing that?

System: perception in humans



Gareth Oliver — Britain’s Got Talent 2009




How is our brain fooled into thinking
that the puppet is talking?

Hypothesis 1: The puppet is talking.
Support:- We see that the puppet’s movements match the speech.
- We see that the human’s face isn’t moving.

Hypothesis 2: The human is talking.
Support:- We know that most puppets don’t come with sound.
- We (kind of) hear the sound coming from the human.



How does our brain decide between
these two hypotheses?

 Optimal: compute the probability of each
from the observations and prior knowledge.

probability that the puppet is talking given observations

probability that the human is talking given observations

e What is perceived is the hypothesis with the
highest probability.

e Claim: all perception consists of computing
probabilities




Computing probabilities means we are uncertain.

Why can’t we be certain?



Low-quality input

Visibility is low Stuff is far away

Stuff happens in the periphery Noise in the brain



Ambiguity

I
I /
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a trapezoid a rectangle on a road a weird wire frame



Low-quality input \
Uncertainty
- l

Ambiguity

Probability



Perception as inference

 The brain, forced to interpret low-quality and
ambiguous observations, computes

probabilities: (probabilistic) inference.

probability of hypothesis given observations

p (hypothesis | observations)

* The brain is not a recording device! @



Interpretation

|

Inference



Al Hazen (lbn al-Haytham), 965-1040
“Perception requires unnoticed judgments.”

Pierre-Simon Laplace, 1749-1827
“One may even say, strictly speaking, that almost all our
knowledge is only probable.”

Hermann von Helmholtz, 1821-1894
“Perception is unconscious inference.”




Is almost all our knowledge only probable?

Do we compute p (hypothesis | observations) ?

Let’s look at daily life!



Perception...

p(that is my friend | visual information)



NOW. . WHERE DID T PUT
THAT ‘HOW To KEEP Your DESK Tiny'

p(memo is present on desk | messy visual information)



Prediction...

|-\..“ _\ |
Columbus -

" Schulenburg
Al

—
DHaBé!Isvillﬂ
1

p(it will rain | atmospheric data)



p(l will get sick if | eat this apple | look, smell)



p(my teammate will catch the ball | peripheral visual information)



p(l can jump over the stream | visual information, jumping ability)



Complex decision-making...

How did you decide to come here?

p(this is an interesting REU | announcement)



IKEA JOB INTERVIEW

Please have a sea

CAnAAy FETE

p(this is a nice place to work | first impression)

p(this is the guy we need| first impression)



p(he’s the one| his behavior)



p(it will rain | atmospheric data)

p(l will get sick if | eat this apple | look, smell)
p(my teammate will catch the ball | peripheral visual information)

p(l can jump over the stream | visual information, jumping ability)
p(that is my friend | visual information)
p(this is a nice place to work | first impression)

p(this is the guy we need| first impression)

p(he’s the one| his behavior)
A

p(hypothesis| observations)

The brain interprets.
Probabilities are everywhere.

All yes/no variables!



... but easily extends to variables with >2 possible values

p(stress | headache)
p(hangover | headache)
p(brain tumor | headache)
p(other | headache)

probability

hangover m——
L

stress
tumor
other



... and to continuous variables

Less uncertainty! More uncertainty!

probability
probability

O 10 20 30 40 50 O 10 20 30 40 50

distance to next car (m) distance to next car (m)



“We (kind of) hear the sound coming
from the human.”

probability

>
Tons of uncertainty! hypothesized sound location

A small experiment...



How does the brain decide who's talking?

Prior knowledge:
p(puppet talking) =0.20
p(human talking) = 0.80

Probabilities given observations:
p(puppet talking | visual observations) = 0.95
p(human talking | visual observations) = 0.05

p(puppet talking | auditory observations) = 0.40
p(human talking | auditory observations) = 0.60

Optimally combined probabilities:
p(puppet talking | observatlons) 0. 20 0. 95 0.40
p(human talking | observatlons) 0.80 0.05 0.60

- It is more probable that the puppet is talking!



Bayes’ rule

posterior probability
p(hypothesis| observations) oc

p(observations| hypothesis) p(hypothesis)
likelihood of hypothesis prior probability



Example: object recognition

s: object identity
image data /

Kersten and Yuille, 2003



Prior over objects Likelihood over objects given 2D image
p(s) L(s) = p(/]s)

Kersten and Yuille, 2003



Posterior over objects Perceive the object with
p(s|/) the highest posterior
probability

,0(51“) =Pq

p(s3|/) = p5 is biggest
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Kersten and Yuille, 2003



Many perceptual effects can be explained as
consequences of Bayesian inference.



Ponzo illusion




Checkerboard shadow illusion




Uninformative likelihood: Necker cube

p(/|s=Cube 1)
p(/|s=Cube 2)

i

Cube 1 Cube 2

Likelihood

Prior probability comes to the rescue:

p(s=Cube 1[1) p(l|s=Cubel)p(s=Cubel) p(s=Cubel)
p(s=Cube2|1) p(l|s=Cube2)p(s=Cube2) p(s=Cube?)




Uninformative likelihoods in nature

N

L

Peppered moth caterpillar
Biston betularia
Noor et al., PLOS ONE 2008



Uninformative likelihood:
hidden messages?

- Led Zeppelin, Stairway to heaven (1971)

- Played backwards

- Satanism?



Or the Story of Aidan?

Daniel Goldreich and lab, McMaster University




How to do science on this?

e Theory: the human brain optimally computes
probabilities in making perceptual judgments

e Experimental test: measure human responses
in a controlled behavioral task (psychophysics)

e Compare with alternative theories




Speech recognition gone wild

Demo from .

http://www.media.uio.no/personer/arntm/McGurk_english.html



McGurk effect

perceived
auditory l visual
((ba” llda" llgall

McGurk and MacDonald, Nature 1976



Why does this happen?

Hypotheses: “ba”, “ga”, “da”, other syllables
Noisy auditory (A) evidence for “ba”
Noisy visual (V) evidence for “ga”

The brain computes p(syllable | A,V): cue
combination



Generative model

speech

auditory and visual observations

Bayes’ rule =2

P(S|Xp%, ) P(Xp1S)P(% IS)



Computing the posterior

degree of belief
(probability) auditory-visual

_ visual
auditory

XA Xy

hypothesized stimulus




What was s?

Probability
wm;

] |
Xy Xy

Hypothesized stimulus

Weighted average:
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The Bayesian observer weighs cues by
their reliabilities, on a single trial.

Do humans do this?



Example: ventriloquist effect
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Is something wrong with the brain?

* We perceive a puppet to be talking...
We hear speech that is not there...

Are we delusional?!

 Nothing wrong! The brain uses probabilities
that are correct based on normally occurring
stimuli.

e |nillusions, the stimuli/task are artificially
created to make those probabilities
misleading.



Mental states

mapping?

Neural states




Two questions about neural states

e How do neurons encode probability
distributions? (representation)

e How do neurons perform Bayesian inference?
(computation)



Hubel and Wiesel



Tuning curve of a single neuron
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Tuning curve of a single neuron
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ldealized tuning curve

Mean response as a function of the stimulus

Activity
(spikes/s) f (S)

‘ Stimulus s

Preferred stimulus of
this neuron



Response

Models of tuning curves

Gaussian Von Mises Rectified cosine Piecewise linear Sigmoid

Stimulus Stimulus Stimulus Stimulus Stimulus

J\

| |

These have a preferred stimulus. These don't.



Variability around the mean response

Response distribution: p(l’ | S)

What functional form?

| || I Trial 1: 7 spikes

| | | Trial 2: 5 spikes
| | Trial 3: 3 spikes

|| I | Trial 4: 6 spikes




Poisson variability

e Discrete distribution (spike counts)
e ' f (s)
r!

p(rs)-

e risan integer, f(s) not necessarily
e Mean ofr:

(r)=21p(rls)=f(s)

I
1M
-



Histograms of a Poisson random
variable

Mean rate 3.2 spikes Mean rate 9.7 spikes

all.

0 10 20 0 10 20
Number of spikes Number of spikes

Count
Count



Fano factor

variance of spike count

Fano factor = ,
mean spike count

10

Poisson process: Fano factor = 1

Variance

0 5 10

Physiology: Fano factor in range 0.3 to 1.8



Single neuron — response variability

Activity

(spikes/s) ’
6
5 p(r|S)
4 Variability depends on stimulus
3
2
1
0

0 60 120 180

Stimulus



Population of neurons

f,(s), f,(s),..., fy (9)
\N: number of neurons

U

Activity
(spikes/s)

D

0 60 120 180
Stimulus

[T

Different preferred stimuli

What is unrealistic about this picture?



Population activity on a single trial
Activity . r:( rza---arN)

S >

given stimulus .

® 9 °o

Preferred stimulus

€€eeeeeeeeeee

‘ N neurons ’

|

These are now different neurons,
not different stimulil




Population activity — variability

Activity
co T = (1,0, ly)
S > :5; f;
ety
208" i

Preferred stimulus

Response distribution
(noise distribution): p(r | S)



Independent Poisson variability

e 'f (s)

One neuron: p(ris)= '
!

~fi(s) i
Population: p(r|s):ﬁe f;(s)
i—1 o

If not independent, then noise correlations



Population codes in the brain

e Primary visual cortex (orientation, spatial frequency)
e MT (motion direction, velocity)

e |T (human faces, objects)

e SC (saccade direction)

 Primary motor cortex (arm movement direction)

e Hippocampus in rat (self location)

e Cercal interneurons in cricket (wind direction)

e Prefrontal cortex (humerosity)

Why population coding and not single-neuron coding?



stimulus
S

encoding

>

population
activity r

decoding

>

stimulus
estimate S

27

probability
distribution




Decoding a probability distribution

Activity Probability
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[ J
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Preferred stimulus Hypothesized stimulus

p(sr)mp(s)

population variability



Computation with population codes
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Integrate-and-fire network

Decoder

Auditory-visual layer:
conductance-based
integrate-and-fire neurons

Synaptic weights \
o o

Visual input Auditory input



Mean network estimate
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Network performs near-optimally

.
*

86

Mean estimates

Network variance
o = N w SN (6] (e)] ~ (0] O

87 88 89 90 91 92 93 6 1 2 3 4 5 6
Mean optimal estimate Optimal variance

Same tuning curves, same covariance matrices
Same tuning curves, different covariance matrices
Different tuning curves, different covariance matrices

Estimate variance
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Testing predictions...

nature .
ncurosciEnce

Neural correlates of multisensory cue integration in
macaque MSTd

Yong Gu', Dora E Angelaki'? & Gregory C DeAngelis'~
Neuron

Multisensory Integration in Macaque
Visual Cortex Depends on Cue Reliability

Michael L. Morgan,! Gregory C. DeAngelis,2? and Dora E. Angelaki'2"
"Department of Anatomy and Neurcbiology, Washington University School of Medicine, St. Louis, MO 63110, USA

2Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
3These authors contributed equally to this work

"Correspondence: angelaki@peg.wustl.edu
DOl 10.1016/).neuron. 2008.06.024



More complex forms of inference

speech object viewpoint

lips

sound ‘

Cue integration Invariant perception (discounting)

KOF two sources?

image

where’s my memo?

one source

memos on desk

$392JN0S OM]

retinal images

Visual search

Causal inference



Your brain is an inference machine

The brain interprets, not just transmits, sensory
iInput.

The brain computes posterior probabilities to
interpret the world: Bayesian inference

Many illusions can be explained as consequences
of probabilistic inference.

Humans are Bayesian observers in many
psychophysical tasks. They weigh observations by
reliability.

Explaining human behavior using a Bayesian
model can elucidate underlying neural processes.



“It's mot an optical illusion, Madame, ii jusi
lonks that way!™



