Ordinary Differential Equations in
Neuroscience with Matlab examples.

* Aim 1- Gain understanding of how to set up
and solve ODE’s

* Aim 2 — Understand how to set up an solve
a simple example of the Hebb rule in 2D
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Part 1: examples of ODE’s how to set them up and how to
solve them.

Example 1: Radioactive decay:

This 1s the canonical example for a simple 1D ODE, 1t 1s also a
good example for a random statistical processes, like you saw
yesterday

Assume there 1s a given amount or radioactive material defined
by the variable X. X(t) 1s the amount at time t.

The probability that each atom will decay 1n a small time period
At 1s independent of what the other molecules do, and only
radioactive molecules can decay to a non radioactive state. The
probability of decay over a small period Atis defined as y-At.The
amount remaining at time t+At 1s:

x(t+ At) = x(t) — x(1)yAt

Lets run the following simple matlab program to see what will
happen to x(t).
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>> x=zeros(1,1001);
>> dt=1/1000;

>> t=0:dt:1000*dt;
>>

>>x(1)=10;

>> gamma=2; 10,
>>for jj=1:(length(t)-1)
x(jjr1)=x(jj)-dt*gamma=x(jj);
end

>> plot(t,x)

What is the shape of these curves?
How do they depend on the parameter y?
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This is a difference equation: X (7 + At) = x(7) — x(¢)yAt

A little simple math: x(t+ At) — x(t) = —x(t)yAt

x(t+A)—x(1)
N =—x(1)y

Now assume that the time step At approached 0 (is very small)

(x(t+At)—x(t)j_@_
At dt

This is now a differential equation:

lim
At—0

dx

a7
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dx

— = = How do we solve this ODE?
dt
Make a guess, assume that:
x(t)=A-exp( B-t)
: : dx
Note for this choice of x(t): r =B -A4A-exp( Bt)= B -x(t)
[

Insert this back into the ODE above, get: B - x(t) = —y - x (1)

Which is a solution if B=-y.

So: x(t)=A-exp(—y-t)=x(0)exp(—-1/7)
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Example 2: Chemical reactions. Assume that when a
molecule

Of type A binds to a molecule of type B they can form a
product of type C. Denote as A+B—C.

A represents the concentration of type A etc.

Assume now that the probability that type A will bind with
be depends on their concentration. Then:

dA
) == =_74-B
(1) 7 .

(2) a4 =—v4-B These are three coupled ordinary
dt differential equations
dC
3) —=+)4-B
(3) — ==+

Where vy is a rate constant.
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Matlab program

len=1000 M A 4B
dt=1/len; dt
A=zeros(1,1000); 2) 4B
B=zeros(1,1000); dt
C=zeros(1,1000); 3y Y B
gamma=2; dt
A(1)=2;
B(1)=10;
timeline=0:dt:dt*len;
for 11=1:len
A(u+1)=A(1)-dt*gamma*A(11)*B(11);
B(i1+1)=B(i1)-dt*gamma™ A (11)*B(i1); Note that there are
g(iﬁ1):C(ii)+dt*gamma*A(ii)*B(ii); conservation equations:
en
plot(timeline,A,'d"); hold on; A+C=A""and B+C=B""
plot(timeline,B,'r-.");plot(timeline,C,'k');
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dA
1 22 =_v4-B
(1) = .

dA
2y 22— _v4-B
(2) 7 y2

dC
3) =~ =4+v4-B
(3) = y2

Simplification.
Lets assume a case where B>>A.

The smallest value on B possible is
B(0)-A(0) which is close to B(0).
Replace then the dynamical variable B
with the parameter B=B0=B(0). Use
conservation A+C=A(0), get:

dA
(1) = —yB,4
(2) C = A(0)- 4

Obtain solution:

A= A(0)exp( —yB,t)
C = A(0)(1— exp( —yB,1))
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Fixed points and their stability:

The problems until now are very simple and exactly, most

problems are not. Lets take a sitmple problem and pretend it 1s

not to see what we would do 1n such a case. Same problem
itten:  d

rewritten C — B A —yB,C =k, —k,C

dt — —_

k, k,
Fixed points when: ‘;L =0 = C = ];—2 = A,
! 1

Is this fixed point stable, that is when we slightly move away
from the FP will the dynamics return us to the FP or take us
away from it?

I Here, the flow is toward
o I the FP, and the FP is
dC AN - stable. If the line had a
— = positive slope, at the FP
dt AN - C it would be unstable.
k,/k, b
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Isoclines

For a system:
dl‘|

I = F(x),x2)
Y2 Gl )
dr X1,A2,

isoclines are defined by

F(.l].,l’)) 0
G(X[ ) 0
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Negative feedback in visual cortex

The following is a model of divisive gain control
originally developed in visual cortex, and applied to the response of
a bipolar cell interacting with an amacrine cell in the retina.

dB 1 L
= — | —B |
drs TB( | A)

dAd 1
d? _TA

(—A + 2B)

This equation is potentially undefined at A=-1. Why does this not
matter?

L 1+ VIF8L
isoclines: 4-28 B- +‘£
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Stability of fixed point

We can find the fixed point by computing where the nulclines
intersect. How do we determine its stability?

Theorem 8: Given the nonlinear system described by the equation:
d¥ ...

— = F(X

5, = FX)

and an equilibrium point at Xgq, which 1s a solution to:
F(Xgq) =0

calculate the Jacobian to produce an associated linear equation:

= AR
ar
where
(0 oR
ox; Oxy
- | 0F OF
4~ c")xl ax?_
; OF N

\ : : S )

where all partial derivatives are evaluated at Xgq. Then sufficiently near Xgq: (a)1fall
eigenvalues of the linear system have negative real parts, the nonlinear system 1is
asymptotically stable; and (b) if the linear system has at least one eigenvalue with a
positive real part, the nonlinear system is unstable. In addition, the type of equili-
brium point for the nonlinear system, i.e. spiral point, node, or saddle point, will be
the same as that for the associated linear equation.
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When L = |0 we find

U -
pi 110 (1+]Af _
\5 10/
with eigenvalues
A= —0.1 £0.089
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A short term memory circuit

Short term memory is frequently examined by delayed
matching tasks
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Fig. 6.3 Responses of a neuron in monkey inferiortemporal cortex during a short-term memory task
(reproduced with permission, Fuster, 1995). Following a 1.0s presentation of a red sample, this neuron fires
at more than twice its resting level for 16 s until the signal to make a match appears and the monkey makes a
choice to receive a reward. The same neuron did not increase its response when the sample was green.
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A simple model

k2

3F,
4B _L{ g MO0y
de 7 1202 + (3E,)”

E ?,
dE, 1 B+ 100(3E,) _}
de 7 1202 + (3E))°

The interaction between the cells is given by the Naka Rushton function
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Nulclines
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Bifurcations

Let’s add an external input, K, to both cells, so that the fixed points are
determined by

10003E, + K)’,
1202 + (3E, + K)-

A stimulus can cause a switch between two stable states
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Fig. 6.5 Hysteresis loop and bifurcations generated by (6.8) in the presence of stimulus K in (6.13). Between A

and B two steady states are asymptotically stable nodes, while the intervening one is an unstable saddle point. If K
1s swept back and forth across range AB, the system will trace out the hysteresis loop shown by the arrows.
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Adaptation

Over time, neurons that are firing will tend to adapt.

dE, 1 100(3E,)"

Frras bt S 2 2 2

de 7 (120 + A4,)" + (3E>)
L 100(3E;)"

dEhzl _E2+ (1 l)+ 2

dt 7 (120 + A5)" + (3Ey)%

dd, |1

el e T e LR

dr ’ra( T 1)

01 el OB

drs Te
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Adaptation can cause loss of
stability of active state
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Fig. 6.7 Response of (6.14) to a brief, 200 ms stimulus coinciding with the narrow peak on the upper left.
Recurrent excitation maintains activity of both E(r) cells at a high level, but activity slowly decays as neural
adaptation A(7) builds up. After S000 ms a sudden loss of neural activity occurs at a bifurcation.
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Part 11: The Hebb rule, an example of learning dynamics and
how we can solve a 2D example.

The Hebb rule: Aw, =At-n x,y X; X, X3 X4
Aw, ) dw, .
At a1

Where: y= Zwl.xl.

If we 1nsert into equation above we get:

dw.
L = wW.X.X.
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Simple 1D example (X;=X).

a. The mput 1s constant over time: x=a ®X
dW 2 2
_ = 77 WwWx = 7761 W Wi
dt
w(t) = w(0) exp(na2t) oy

b. The input has a probability of 72 of being 1 and a probability of
72 of being -1. Assume learning 1s slow so that can take average
over input distribution:

<%> =17 w<x2> = UW(O.S (1%) +YO.5 : (—1)2)= 7w
1

w(t) = w(0)exp(7t)
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2D example.

The Hebb rule: =77

Average: <dwi >
dt

Matrix notation:

X
Assume: = <
Xy

)"

Show simple
matlab
simulation of
this example
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aw. . B X,
< ;;l > =Y w, Wwhere: O, = <xl.x j>
j
((1.0) , ) s
wit p =0,
Assume [xlj _ J\0-5 X,
X (0.5)
? with p = 0.5
\1.0)
> 1.0.5 0.5> 0.5-1} (0.625 0.5
Q=05 , |+0.5 o=
0.5-1 0.5 1-0.5 1 0.5 0.625
dw Lets pretend now dw
< A > =1wQ that we can simply Jt =1wQ

drop this average
symbol
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dw

= \", %

7 7Q
Find the eigen vectors of Q: Q-u, = Au,
Matlab code

>> Q=[0.625, 0.5
0.5, 0.625];

1
>> [U,lam]=eig(Q) u, = %(J A, =1.125

U=

-0.7071 0.7071
0.7071 0.7071

u, =—— A, =0.125
lam = \/E —1

0.1250 0
0 1.1250
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The averaged dw

‘Hebbian’ ODE: E =nQw

Find the eigen-vectors of Q: Q-u, = Au,

a b
If Q has the common form: (Q = ( j
b a

=a+b u = 1 1
;L] 1 V2 +1
I'hen:

1 (+1
A =a-b u, :ﬁ(—lj
w(t) = a,(0) exp(4)u, +a,(0)exp(4,1)u,

What happens if L, >> L, ?

Friday, June 4, 2010



What would happen with the learning rule:

aw

l

dt

=17 (xiy_wiyz)
Oja (1982)

Where are the F.P, how does this relate to the eigen-
vectors, and why
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