
A Parallel-in-Time Gradient-Type Method for
Discrete Time Optimal Control Problems ∗

Xiaodi Deng † Matthias Heinkenschloss ‡

May 3, 2016

Abstract
This paper introduces and analyzes a new parallel-in-time gradient type method for the so-

lution of convex linear-quadratic discrete-time optimal control (DTOC) problems. Each itera-
tion of the classical gradient method requires the solution of the forward-in-time state equation
followed by the solution of the backward-in-time adjoint equation to compute the gradient. To
introduce parallelism, the time steps are split into N groups corresponding to time subintervals.
At the time subinterval boundaries state and adjoint information from the previous iteration is
used. On each time subinterval the forward-in-time state equation is solved, the backward-
in-time adjoint equation is solved, gradient-type information is generated, and the control are
updated. These computations can be performed in parallel across time subintervals. State and
adjoint information at time subinterval boundaries is then exchanged with neighboring subin-
tervals and the process is repeated. The resulting iteration can be interpreted as a so-called
(2N−1)-part iteration scheme. Convergence of the new parallel-in-time gradient type method
is proven for suitable step-sizes by showing that an associated block companion matrix has
spectral radius less than one. The performance of the new method is demonstrated on a DTOC
problem obtained from a discretization of a 3D parabolic optimal control problem. In this
example nearly perfect speed-up is observed for moderate number of time subdomains. This
speed-up due to time decomposition multiplies existing speed-up due to parallelization in the
solution of state and adjoint equations.

Key words Optimal control, gradient method, iterative methods for linear systems,
parallel computation

AMS subject classifications 49M05, 49M27, 65F10
∗This work was supported in part by NSF grant DMS-1522798, by the Data Analysis and Visualization Cyberin-

frastructure funded by NSF under grant OCI-0959097 and Rice University, and a sponsored research agreement with
the ExxonMobil Upstream Research Company.

†Department of Computational and Applied Mathematics, MS-134, Rice University, 6100 Main Street, Houston,
TX 77005-1892. E-mail: Xiaodi.Deng@rice.edu

‡Department of Computational and Applied Mathematics, MS-134, Rice University, 6100 Main Street, Houston,
TX 77005-1892. E-mail: heinken@rice.edu

2 X. DENG AND M. HEINKENSCHLOSS

1 Introduction

We introduce and analyze a new parallel-in-time gradient-type method for convex linear-quadratic
discrete-time optimal control (DTOC) problems. Each iteration of the standard gradient method
applied to DTOC problems requires the forward in time solution of the state equation, followed by
the backward in time solution of the so-called adjoint equation before the gradient can be computed
and the control can be updated. To introduce parallelism our method splits the time steps into N
groups, corresponding to time subintervals. At the boundary index of each time subinterval we
use state and adjoint information from the previous iteration. This allows the computation of state,
adjoint, and gradient, and control update on each time subinterval in parallel. After states and
adjoints are computed on each time subinterval state and adjoint information at boundary indices
of time subintervals are exchanged with neighboring time subintervals. Since for given controls,
the state and adjoint equations are typically not satisfied on the entire time interval, there are
‘jumps’ in the states and adjoints at indices corresponding time subinterval boundaries, we refer to
our scheme as a gradient-type method.

We show that the resulting iteration can be interpreted as a so-called (2N− 1)-part iteration
scheme as introduced in [6], [7]. However, in our context the Hessian matrix and its (2N−1)-part
splitting is never explicitly computed. Moreover, the convergence results in [6] [7] are for specific
splittings only and do not apply to our setting. We use the structure of the (2N−1)-part iteration
scheme and properties of a corresponding block companion matrix to prove convergence of our
new parallel-in-time gradient-type method for sufficiently small step-size.

This work is motivated by linear-quadratic optimal control problems governed by parabolic
partial differential equations (PDEs) and our example problems are optimal control problems gov-
erned by time dependent advection diffusion PDE. We use a 1D problem to illustrate some of the
theoretical convergence results, and we use a 3D problem to illustrate the parallel performance
of parallel-in-time gradient-type method. For the 3D example problem we observe nearly perfect
speed-up for moderate number N of time subdomains. The number N up to which nearly perfect
speed-up is observed depends on problem data such as length of the time domain. Our specific
example excellent speed-ups are obtained for N ≈ 20 and N ≈ 50 time subdomains. It is also
important to note that the speed-up due to time decomposition multiplies existing speed-up in the
solution of state and adjoint equations, e.g, due to parallel solution of linear systems arising in the
time-stepping.

Time-decomposition based methods for linear quadratic optimal control problems have re-
cently been proposed in [1], [5], [10], [18] [2], [15], [12], [4]. Specifically, [1], [5], [10] use time
decomposition for parabolic optimal control problems. In [5], [10] the time subdomains are non-
overlapping, while [1] use overlaps. All iterative methods in [1], [5], [10] approximately solve
time-subdomain optimal control problems and do not directly generalize to nonlinear, non-convex
problems. The papers [2], [15] use time domain decomposition based reformulations to derive
constrained optimization problems in which the control variables and states at time-domain in-
terfaces are the optimization variables, and apply augmented Lagrangian-type methods for their

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 3

solution. The papers [12], [4], explore the connection between time domain decompsition and
multiple shooting methods, and discuss space-time adaptation of finite element discretizations,
but use standard optimization approaches. Finally the paper [18] introduces a ‘parareal’ based
preconditioner for optimality systems for linear-quadratic parabolic optimal control problems. Al-
though the optimization formulation itself does not use time-decomposition, the ‘parareal’ method
is used for the solution of systems related to the state and adjoint equations and it introduces
parallel-in-time computations into the preconditioner. Our parallel-in-time gradient-type method
resembles the classical gradient method. A given implementation of the classical gradient method
can be easily modified to implement our parallel-in-time gradient-type method. Conceptually our
parallel-in-time gradient-type method can be generalized to general nonlinear problems, although
our current theory does not capture such extensions.

This paper is organized as follows. In Section 2 we state the DTOC problem and present
the classical gradient method for its solution. The results in this section are well known, but
the notation introduced is important for the presentation and analysis of our method. Section 3
introduces the parallel-in-time gradient-type method. We then interpret this new method as a (2N−
1)-part iteration scheme. The convergence of this (2N − 1)-part iteration scheme is determined
by the spectrum of a block companion matrix, parameterized by the step-size of gradient-type
method. We prove that for sufficiently small positive step-size the spectral radius of the companion
matrix is less than one and, therefore, that our parallel-in-time gradient-type method converges
with sufficiently small positive step-size selection. In Section 4 we illustrate the performance of
our new method on DTOC problems obtained from discretizations of optimal control problems
governed by time dependent advection diffusion PDEs.

2 Gradient Method
We consider DTOC problems with state and control variables y0, ...,yK ∈ IRny and u0, ...,uK−1 ∈
IRnu . Given symmetric positive semidefinite matrices Q1, ...,QK ∈ IRny×ny , symmetric positive def-
inite matrices R0, ...,RK−1 ∈ IRnu×nu , matrices A0, ...,AK−1 ∈ IRny×ny , B0, ...,BK−1 ∈ IRny×nu , and
vectors d1, ...,dK,c0, ...,cK−1 ∈ IRny , e0, ...,eK−1 ∈ IRnu , the DTOC problem is given by

minimize
K

∑
k=1

[1
2

yT
k Qkyk +dT

k yk +
1
2

uT
k−1Rk−1uk−1 + eT

k−1uk−1

]
(2.1a)

subject to y0 = ygiven, (2.1b)
yk+1 = Akyk +Bkuk + ck, k = 0, ...,K−1. (2.1c)

We can use the constrains (2.1c) to express yk as a function of u0, . . . ,uk−1. This leads to the
following unconstrained formulation of (2.1).

Minimizeu0,...,uK−1 J(u0, ...,uK−1), (2.2a)

4 X. DENG AND M. HEINKENSCHLOSS

where

J(u0, ...,uK−1) =
K

∑
k=1

[1
2

yk(u0, . . . ,uk−1)
T Qkyk(u0, . . . ,uk−1)+dT

k yk(u0, . . . ,uk−1)

+
1
2

uT
k−1Rk−1uk−1 + eT

k−1uk−1

]
. (2.2b)

The problems (2.1) and (2.2) are equivalent.
It is well-known that the gradient of J can be computed using the adjoint equation approach.

See, e.g., the books [3, Sec. 1.9], [14, Sec. 2.4]. The gradient can be computed as follows.

Compute y0, . . . ,yK by solving

y0 = ygiven, (2.3a)
yk+1 = Akyk +Bkuk + ck for k = 0, ...,K−1. (2.3b)

Compute p0, . . . , pK−1 by solving

pK−1 = dK +QKyK, (2.3c)

pk−1 = dk +Qkyk +AT
k pk for k = K−1, ...,1. (2.3d)

The gradient is given by

∇ukJ(u0, ...,uK−1) = Rkuk + ek +BT
k pk for k = 0, ...,K−1. (2.3e)

One step of the gradient method is listed in Algorithm 2. We use subscripts k to denote time
steps and superscripts (j) to denote the iteration in the gradient method.

Algorithm 1 jth iteration of the gradient method with step size α > 0

1: Given control u(j)
0 , . . . ,u(j)

K−1, and initial state y(j)
0 = ygiven.

2: for k = 0, ...,K−1 do . solve state equation forward in time
3: Compute y(j)

k+1 = Aky(j)
k +Bku(j)

k + ck
4: end for
5: Compute p(j)

K−1 = dK +QKy(j)
K . solve adjoint equation backward in time

6: for k = k−1, ...,1 do
7: Compute p(j)

k−1 = dk +Qky(j)
k +AT

k p(j)
k

8: end for
9: for k = 0, ...,K−1 do . update control using negative gradient

10: u(j+1)
k = u(j)

k −α(Rku(j)
k + ek +BT

k p(j)
k)

11: end for

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 5

For the following presentation it will be helpful to write the gradient method in a more compact
matrix-vector notation. We define the vectors

u def
=


u0
u1
...

uK−1

 ∈ IRKnu , y def
=


y1
y2
...

yK

 , p def
=


p0
p1
...

pK−1

 , y0
def
=


A0y0

A1A0y0
...

AK−1...A0y0

 ∈ IRKny , (2.4a)

the matrix

L def
=



I
A1 I

A2A1 A2 I
A3A2A1 A3A2 A3 I

... . . .
AK−1AK−2 · · ·A1 AK−1AK−2 · · ·A2 · · · · · · AK−1 I


∈ IRKny×Kny, (2.4b)

and the quantities

Q def
= diag(Q1, ...,QK), R def

= diag(R0, ...,RK−1), B def
= diag(B0, ...,BK−1), (2.4c)

c def
= (cT

0 , ...,c
T
K−1)

T , d def
= (dT

1 , ...,d
T
K)

T , e def
= (eT

0 , ...,e
T
K−1)

T . (2.4d)

The state computations (2.3a,b) can be written as

y = L(Bu+ c)+y0, (2.5)

the adjoint computations (2.3c,d) can be written as

p = LT (Qy+d), (2.6)

and the gradient (2.3e) is given by ∇J(u) = Ru+ e+BT p. If we insert (2.6) and (2.5) into the
previous expression for ∇J(u), then

∇J(u) =
[
R+(LB)T Q(LB)

]
u+ e+(LB)T Q(Lc+y0)+(LB)T d

= Hu+g, (2.7)

where
H def

= R+(LB)T Q(LB), g def
= e+(LB)T Q(Lc+y0)+(LB)T d. (2.8)

Since R0, ...,RK−1 ∈ IRnu×nu symmetric positive definite and Q1, ...,QK ∈ IRny×ny are symmetric
positive semidefinite, H is symmetric positive definite. Alternatively, we can insert (2.5) into
(2.2b) to obtain

J(u) =
1
2

uT Hu+gT u+ const. (2.9)

6 X. DENG AND M. HEINKENSCHLOSS

and derive the expression (2.7) this way.
We also recall that the gradient method with constant step-size α, in this context also known as

Richardson’s iteration,

u(j+1) = u(j)−α(Hu(j)+g), (2.10)

is an iterative method derived from the splitting H = α−1I− (α−1I−H). Let 0 < λmin(H) ≤
λmax(H) denote the smallest and largest eigenvalue of H. The spectral radius of the iteration
matrix I−αH is less than one for all step sizes 0 < α < 2/λmax(H). The smallest spectral radius
ρ∗ = (λmax(H)− λmin(H))/(λmax(H)+ λmin(H)) is achieved with step size α∗ = 2/(λmax(H)+
λmin(H)).

3 Parallel Gradient-Type Method

3.1 Derivation of the Method

The gradient method requires a full forward-in-time state solve followed by a full backward-in-
time adjoint solve before the control can be updated. Our parallel-in-time gradient method splits
the time indices into N subsets, where the ith one is given by {Ki, . . . ,Ki+1}. i = 0, . . . ,N−1, and
the time indices satisfy 0 = K0 < K1 < .. . < KN = K. Since the indices Ki, . . . ,Ki+1 correspond to
time steps, we refer to {Ki, . . . ,Ki+1} as the ith time subinterval, and refer to the indices Ki,Ki+1
as the left/right time interval boundary.

The idea of our parallel-in-time gradient-type method is simple. Suppose we are given the
current control on the ith time subinterval, u(j)

Ki
,u(j)

Ki+1, . . . ,u
(j)
Ki+1−1. If we knew the state infor-

mation y(j)
Ki

at the left time interval boundary Ki and the adjoint information p(j)
Ki+1

at the right

time interval boundary Ki+1, then we can compute y(j)
k , k = Ki + 1, . . . ,Ki+1, the adjoints p(j)

k ,

k = Ki+1− 1, . . . ,Ki, and then update the controls with indices Ki,Ki + 1, . . . ,Ki+1− 1. Since y(j)
Ki

and p(j)
Ki+1

are only available through an entire state and adjoint solve, we use the values from the
previous iteration, and exchange these values after time subinterval computations for state and ad-
joint information are completed. Thus for the ith time subinterval, i ∈ {1, . . . ,N−2}, we proceed
as follows (for i = 0 and i = N− 1 initial state information or final adjoint information is given):
Given u(j)

Ki
,u(j)

Ki+1, . . . ,u
(j)
Ki+1−1 and y(j−1)

Ki
and p(j−1)

Ki+1
we first compute ith time subinterval states

using

y(j)
Ki+1 = AKiy

(j−1)
Ki

+BKiu
(j)
Ki

+ cKi, (3.1a)

y(j)
k+1 = Aky(j)

k +Bku(j)
k + ck, k = Ki +1, . . . ,Ki+1−1. (3.1b)

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 7

Next we compute ith time subinterval adjoints using

p(j)
Ki+1−1 = QKi+1y(j)

Ki+1
+dKi+1 +AT

Ki+1
p(j−1)

Ki+1
, (3.1c)

p(j)
k−1 = Qky(j)

k +dk +AT
k p(j)

k , k = Ki+1−1, . . . ,Ki +1. (3.1d)

Then we update the ith time subinterval controls using

u(j+1)
k = u(j)

k −α(Rku(j)
k + ek +BT

k p(j)
k), k = Ki, . . . ,Ki+1−1. (3.1e)

Finally, we send y(j)
Ki+1

to processor i+ 1 and p(j)
Ki

to processor i− 1, and we receive y(j)
Ki

from

processor i−1 and p(j)
Ki+1

from processor i+1.
The complete statement, taking into account the modifications for time subintervals i = 0 and

i=N−1 is given in Algorithm 3.1. Since at given controls u(j)
0 , . . . ,u(j)

K−1 the state equation (2.3a,b)
and the adjoint equation (2.3c,d) are not satisfied (there are ‘jumps’ at the time interval boundaries
K1, . . . ,KN−1) when Algorithm 3.1 is used, we call it ‘gradient-type’.

8 X. DENG AND M. HEINKENSCHLOSS

Algorithm 2 jth iteration of the parallel-in-time gradient-type method with step size α > 0. De-
scribes the tasks executed by processor of rank i ∈ {0, ...,N−1}

1: Input control u(j)
Ki
,u(j)

Ki+1, . . . ,u
(j)
Ki+1−1. . initialization of the iteration

2: if i > 0 and j = 0 then
3: Input initial y(−1)

Ki
4: end if
5: if i < N−1 and j = 0 then
6: Input initial p(−1)

Ki+1
7: end if

8: if i = 0 then . solve the state equation forward in time
9: y(j)

Ki+1 = AKiygiven +BKiu
(j)
Ki

+ cKi

10: else
11: y(j)

Ki+1 = AKiy
(j−1)
Ki

+BKiu
(j)
Ki

+ cKi

12: end if
13: for k = Ki +1, . . . ,Ki+1−1 do
14: y(j)

k+1 = Aky(j)
k +Bku(j)

k + ck
15: end for

16: if i = N−1 then . solve the adjoint equation backward in time
17: p(j)

Ki+1−1 = QKi+1y(j)
Ki+1

+dKi+1

18: else
19: p(j)

Ki+1−1 = QKi+1y(j)
Ki+1

+dKi+1 +AT
Ki+1

p(j−1)
Ki+1

20: end if
21: for k = Ki+1−1, . . . ,Ki +1 do
22: p(j)

k−1 = Qky(j)
k +dk +AT

k p(j)
k

23: end for

24: for k = Ki, . . . ,Ki+1−1 do . update control
25: u(j+1)

k = u(j)
k −α(Rku(j)

k + ek +BT
k p(j)

k)
26: end for

27: if i > 0 then . communication between processors
28: send p(j)

Ki
to rank i−1

29: receive y(j)
Ki

from rank i−1
30: end if
31: if i < N−1 then
32: send y(j)

Ki+1
to rank i+1

33: receive p(j)
Ki+1

from rank i+1
34: end if

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 9

3.2 Interpretation as a (2N−1)-Part Iteration Scheme
We express the parallel gradient-type method using a compact form, which will allow us to inter-
pret this new method as a (2N−1)-part iteration scheme corresponding to (2.10), and which will
form the basis of our convergence proof.

We define the ordered product of matrices

j

∏
h=i

Ah
def
=

{
A jA j−1× . . .×Ai+1Ai, i≤ j,
I, i > j.

Using this notation and recursive substitutions of (3.1a,b) we obtain the following. For j ≥ 0 ,
0≤ i≤ N−1, and 1≤ s≤ Ki+1−Ki, note that y(−1)

Ki
is initialized when the algorithm starts,

y(j)
Ki+s =

[Ki+s−1

∏
h=Ki

Ah

]
y(j−1)

Ki
+

s−1

∑
t=0

[Ki+s−1

∏
h=Ki+s−t

Ah

]
(BKi+s−t−1u(j)

Ki+s−t−1 + cKi+s−t−1). (3.2)

For j ≥ 1 and i ≥ 1, applying (3.2) with j replaced by j− 1 and Ki replaced by Ki−1, and with
s = Ki−Ki−1 gives

y(j−1)
Ki

=
[Ki−1

∏
h=Ki−1

Ah

]
y(j−2)

Ki−1
+

Ki−Ki−1−1

∑
t=0

[Ki−1

∏
h=Ki−t

Ah

]
(BKi−t−1u(j−1)

Ki−t−1 + cKi−t−1). (3.3)

Inserting (3.3) into (3.2) gives for j ≥ 1 and i≥ 1,

y(j)
Ki+s =

[Ki+s−1

∏
h=Ki−1

Ah

]
y(j−2)

Ki−1
+

Ki−Ki−1−1

∑
t=0

[Ki+s−1

∏
h=Ki−t

Ah

]
(BKi−t−1u(j−1)

Ki−t−1 + cKi−t−1)

+
s−1

∑
t=0

[Ki+s−1

∏
h=Ki+s−t

Ah

]
(BKi+s−t−1u(j)

Ki+s−t−1 + cKi+s−t−1). (3.4)

Repeating the previous steps leads to the following expression for j ≥ i,

y(j)
Ki+s =

[Ki+s−1

∏
h=0

Ah

]
ygiven

+
i

∑
d=1

Ki−d+1−Ki−d−1

∑
t=0

[Ki+s−1

∏
h=Ki−d+1−t

Ah

]
(BKi−d+1−t−1u(j−d)

Ki−d+1−t−1 + cKi−d+1−t−1)

+
s−1

∑
t=0

[Ki+s−1

∏
h=Ki+s−t

Ah

]
(BKi+s−t−1u(j)

Ki+s−t−1 + cKi+s−t−1). (3.5)

10 X. DENG AND M. HEINKENSCHLOSS

Rearranging (3.5) into matrix-vector product form gives, for j ≥ i,

y(j)
Ki+s =

[Ki+s−1

∏
h=0

Ah

]
ygiven

+
i

∑
d=1

[
∏

Ki+s−1
h=Ki−d+1 Ah,∏

Ki+s−1
h=Ki−d+2 Ah, . . . ,∏

Ki+s−1
h=Ki−d+1

Ah

]


BKi−d u(j−d)
Ki−d

+ cKi−d

BKi−d+1u(j−d)
Ki−d+1 + cKi−d+1

...
BKi−d+1−1u(j−d)

Ki−d+1−1 + cKi−d+1−1



+
[
∏

Ki+s−1
h=Ki+1 Ah,∏

Ki+s−1
h=Ki+2 Ah, . . . ,∏

Ki+s−1
h=Ki+s−1 Ah, I

]


BKiu
(j)
Ki

+ cKi

BKi+1u(j)
Ki+1 + cKi+1

...
BKi+s−1u(j)

Ki+s−1 + cKi+s−1

 (3.6a)

=
[Ki+s−1

∏
h=0

Ah

]
ygiven

+
i

∑
d=1

[Ki−d zero blocks︷ ︸︸ ︷
0, . . . ,0 ,

Ki+s−1

∏
h=Ki−d+1

Ah,
Ki+s−1

∏
h=Ki−d+2

Ah, . . . ,
Ki+s−1

∏
h=Ki−d+1

Ah,

(K−Ki−d+1) zero blocks︷ ︸︸ ︷
0, . . . ,0

]
(Bu(j−d)+ c)

+
[Ki zero blocks︷ ︸︸ ︷

0, . . . ,0 ,
Ki+s−1

∏
h=Ki+1

Ah,
Ki+s−1

∏
h=Ki+2

Ah, . . . ,
Ki+s−1

∏
h=Ki+s−1

Ah, I,

(K−Ki)−s zero blocks︷ ︸︸ ︷
0, . . . ,0

]
(Bu(j)+ c). (3.6b)

In (3.6b) each zero block is of size ny×ny. Notice that the row vectors in (3.6b) are row blocks of
L.

Equation (3.6b) represents the (Ki + s)th block (of length ny) component of the vector y(j).
To combine (3.6b) into a representation for the entire vector y(j) we define matrices I−d ∈
{0,1}Kny×Kny , d = 0, ...,N− 1 as follows. We use Matlab notation to indicate submatrices. The
matrix I−d is a zero matrix except for the submatrices

I−d(Ki−1ny +1 : Kiny, Ki−1−dny +1 : Ki−dny), i = d +1, ...N,

which are matrices of all ones (i.e. the matrix entries of I−d in the intersection of rows Ki−1ny +1
to Kiny and of columns Ki−1−dny+1 to Ki−dny are equal to one). See Figure 3.1 for an illustration.
Note that there are no overlapping nonzero entries for matrices I−d for d = 0, ...,N− 1 and that
∑

N−1
d=0 I−d has entires ‘1’ in all positions where L is nonzero. Now, if ‘◦’ represents the Hadamard

product, then (3.6) can be written as

y(j) =
N−1

∑
d=0

(I−d ◦L)(Bu(j−d)+ c)+y0, for j ≥ N−1. (3.7)

Similar to the derivation of (3.7) we can show that the equations (3.1c,d) for the adjoints lead

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 11

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

I0

I
−1

I
−2

Figure 3.1: Illustration of the positions of ‘1’s in I0,I−1 and I−2 in an example where the state
dimension is ny = 2, the K = 10 time steps are split into N = 3 subintervals with K0 = 0,K1 =
3,K2 = 6,K3 = 10.

to the compact representation

p(j) =
N−1

∑
d=0

(I−d ◦L)T (Qy(j−d)+d), for j ≥ N−1. (3.8)

Using (3.1e), (3.7) and (3.8) gives the following representation of our parallel-in-time gradient
type iteration j ≥ 2N−2,

u(j+1) = u(j)−α(Ru(j)+ e+BT p(j))

= u(j)−α

[
Ru(j)+

N−1

∑
r=0

N−1

∑
l=0

(I−r ◦LB)T Q(I−l ◦LB)u(j−r−l)+g
]
. (3.9)

We define

H0
def
= R+(I0 ◦LB)T Q(I0 ◦LB), (3.10a)

Hd
def
= ∑

l,r∈{0,...,N−1}
l+r=d

(I−r ◦LB)T Q(I−l ◦LB), d = 1, ...,2N−2. (3.10b)

12 X. DENG AND M. HEINKENSCHLOSS

Note that the Hessian (2.8) can be split as

H =
2N−2

∑
d=0

Hd. (3.11)

Inserting (3.10) into (3.9) gives

u(j+1) = u(j)−α(
2N−2

∑
d=0

Hdu(j−d)+g). (3.12)

The presentation (3.12) reveals that our parallel-in-time gradient-type method is a (2N− 1)-part
iteration scheme as defined in [6], [7] derived from the (2N−1)-part additive splitting

H = α
−1I− (α−1I−H0)− (−H1)− . . .− (−H2N−2),

which results by adding/subtracting α−1I in (3.11).
The convergence results in [6] [7] are for specific splittings (in our notation, for specific matri-

ces H,H0, . . . ,H2N−2) only and do not apply to our setting. In the next section we prove conver-
gence for sufficiently small step-size α > 0.

3.3 Convergence Proof
Using the representation (2.9) it follows immediately that the optimal control u(∗) satisfies Hu(∗)+
g = 0 and, using (3.11),

u(∗) = u(∗)−α(
2N−2

∑
d=0

Hdu(∗)+g). (3.13)

Subtracting (3.12) from (3.13) shows that the errors

ε
(j) = u(∗)−u(j) (3.14)

obey the recursion

ε
(j+1) = ε

(j)−α(
2N−2

∑
d=0

Hdε
j−d). (3.15)

If we define the block companion matrix

C(α) =



I−αH0 −αH1 −αH2 . . . −αH2N−3 −αH2N−2
I

I
I

. . .
I 0


, (3.16)

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 13

then the recursion (3.15) for the errors is equivalent to
ε(j+1)

ε(j)

...
ε(j−2N+3)

= C(α)


ε(j)

ε(j−1)

...
ε(j−2N+2)

 . (3.17)

Thus, convergence of our parallel-in-time gradient method is guaranteed if the spectral radius of
the block companion matrix (3.16) is less than one. In the remainder of this section we will show
that this is true for sufficiently small step size.

Theorem 3.1 For sufficiently small step size α > 0, the matrix C(α) defined in (3.16) has spectral
radius less than one.

The rest of this section is devoted to the proof of this convergence theorem. Specifically,
Theorem 3.1 is a special case of Theorem 3.3 below.

In our convergence proof the positive definiteness of the Hessian is important, but not the partic-
ular structure of the matrices Hd in the splitting (3.11). Therefore, given complex m×m matrices
M0,M1, ...,Mn with ∑

n
i=0 Mi Hermitian and positive definite, we consider the block companion

matrix

C̃(α)
def
=



I−αM0 −αM1 −αM2 . . . −αMn−1 −αMn
I

I
I

. . .
I 0


. (3.18)

We will prove that the spectral radius of C̃(α) is strictly less than one for sufficient small step sizes
α > 0.

Our proof is based on an analysis of the location of the roots of the characteristic polynomial
of C̃(α),

Q(α,λ)
def
= det(C̃(α)−λI), (3.19)

for small α > 0. We also define

P(α,λ) def
= λ

n+1I+λ
n(αM0− I)+α

n

∑
i=1

λ
n−iMi. (3.20)

Note that Q(α,λ) = (−1)mn det(P(α,λ)) (see, e.g., [8, p.17]). The following three statements are
equivalent

i. λα is an eigenvalue of C̃(α).

14 X. DENG AND M. HEINKENSCHLOSS

ii. λα is an latent root of P(α, ·), i.e. P(α,λα) is singular.

iii. λα is a root of Q(α, ·).

Since P(0,λ) = λn(λ−1)I and det(P(0,λ)) = λmn(λ−1)m, the companion matrix C̃(0) only has
eigenvalues 0 and 1. By continuity of polynomial roots with respect to polynomial coefficients
[17], the roots λα of Q(α, ·) are contained in small balls around 0 and around 1 for sufficiently
small α > 0. See Figure 3.2. For the roots λα in the small ball around 1, we can actually show that
they must be contained in the open cone Ck defined in (3.21) below, and that they have magnitude
less than one. See Figure 3.2 and Lemma 3.2 below. This implies that the spectral radius of C̃(α)
is less than one for sufficiently small α > 0 (see Theorem 3.3 below).

Ck

Re

Im

−1 0 1

−i

i

Figure 3.2: For sufficiently small α > 0 the eigenvalues λα of the companion matrix C̃(α), defined
in (3.18) with ∑

n
i=0 Mi Hermitian and positive definite, lie in the union of a small open ball around

0 and of the intersection of a small open ball around 1 and the open cone Ck, indicated by the dark
shaded regions. In particular, all eigenvalues are inside the unit disk.

In the following B(c,r) denotes the open ball in the complex plane of radius r centered at c.
The real and imganizary parts of a complex number z are denoted by Re(z) and Im(z), respectively.

Lemma 3.2 If M0,M1, ...,Mn are m×m complex matrices with ∑
n
i=0 Mi Hermitian and positive

definite, then the following two statement are valid.

i. For any δ2 there exists a δ1 > 0 such that for all α ∈ (0,δ1) ⊂ R all latent roots of P(α,λ)
are contained in B(0,δ2)∪B(1,δ2)⊂ C.

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 15

ii. Let δ2 ∈ (0,1/2) and δ1 be given as in part i. For all k > 0 there exists δ3 ∈ (0,δ1) such that
for all α ∈ (0,δ3)⊂ R the latent roots λ ∈ B(1,δ2) of P(α,λ) satisfy

λ ∈Ck
def
= {z ∈ C : Re(z)< 1 and | Im(z)|/(1−Re(z))< k} . (3.21)

Proof: i. The first statement is a direct consequence of the fact that the roots of det(P(0,λ)) =
det(λn(λ−1)I) = λmn(λ−1)m are λ = 0 and λ = 1 and of the continuity of polynomial roots with
respect to polynomial coefficients. (See, e.g., [17].)

ii. We first prove the second part of the lemma for the case of n = 0. In this case P(α,λ) = λI−
(I−αM0) and M0 is Hermitian and positive definite. All latent roots of P(α,λ) = λI− (I−αM0)
are given by λα = 1−ασ, where σ > 0 is an eigenvalue of M0. Let σmax denote the largest
eigenvalue of M0. For α ∈ (0,δ3), δ3 < min{2/σmax(M0),δ1}, the latent roots of P(α,λ) are
contained in (−1,1)⊂Ck for any k > 0.

Now let n≥ 1. We can write

P(α,λ) = λ
n+1I+λ

n(αM0− I)+α

n

∑
i=1

λ
n−iMi

= α

n

∑
i=0

Mi +(λ−1)I+
[
(λn−1)(λ−1)I+α

n−1

∑
i=0

(λn−i−1)Mi

]
. (3.22)

The last term in (3.22) can be estimated using

∥∥(λn−1)(λ−1)I+α

n−1

∑
i=0

(λn−i−1)Mi
∥∥

2

=
∥∥(λ−1)2

n−1

∑
i=0

λ
iI+α(λ−1)

n−1

∑
i=0

(
n−i−1

∑
j=0

λ
j) Mi

∥∥
2

≤ |λ−1|
[
|λ−1|

n−1

∑
i=0
|λ|i +α

n−1

∑
i=0

(
n−i−1

∑
j=0
|λ| j)‖Mi‖2

]
. (3.23)

There exist ε1,ε2 > 0 such that for all α ∈ (0,ε1), λ ∈ B(1,ε2),

|λ−1|
n−1

∑
i=0
|λ|i +α

n−1

∑
i=0

(
n−i−1

∑
j=0
|λ| j)‖Mi‖2 <

1√
2

and, hence ∥∥(λn−1)(λ−1)I+α

n

∑
i=0

(λn−i−1)Mi
∥∥

2 ≤
1√
2
|λ−1|. (3.24)

16 X. DENG AND M. HEINKENSCHLOSS

Let σmin(·) denote the minimum singular value of a matrix and recall that ∑
n
i=0 Mi is Hermitian

and positive definite. For α > 0 and λ ∈ C the first two terms in (3.22) can be estimated using

σmin

(
α

n

∑
i=0

Mi +(λ−1)I
)
=
∣∣∣ασmin(

n

∑
i=0

Mi)+(λ−1)
∣∣∣

=
[(

ασmin(
n

∑
i=0

Mi)+Re(λ−1)
)2

+ Im(λ−1)2
]1/2

. (3.25a)

Furthermore, if Re(λ)≥ 1, then

σmin

(
α

n

∑
i=0

Mi +(λ−1)I
)
=
[(

ασmin(
n

∑
i=0

Mi)+Re(λ−1)
)2

+ Im(λ−1)2
]1/2

≥ 1√
2

∣∣∣ασmin(
n

∑
i=0

Mi)+Re(λ−1)
∣∣∣+ 1√

2

∣∣∣ Im(λ−1)
∣∣∣

=
1√
2

ασmin(
n

∑
i=0

Mi)+
1√
2

Re(λ−1)+
1√
2

∣∣∣ Im(λ−1)
∣∣∣

≥ 1√
2

ασmin(
n

∑
i=0

Mi)+
1√
2
|λ−1|. (3.25b)

Combining (3.24) and (3.25b) shows that for all α∈ (0,ε1) and all λ∈ B(1,ε2) with Re(λ)≥ 1,

σmin(α
n

∑
i=0

Mi +(λ−1)I)> ‖(λn−1)(λ−1)I+α

n

∑
i=0

(λn−i−1)Mi‖2 (3.26)

and, consequently, that P(α,λ) is non-singular. Therefore, for all α ∈ (0,ε1) all latent roots of
P(α,λ) that are contained in B(1,ε2) satisfy Re(λα)< 1.

Given an arbitrary k > 0. For λ with Re(λ) < 1 and λ 6∈ Ck, | Im(λ− 1)| = | Im(λ)| ≥ k(1−
Re(λ)) = k Re(1−λ) = k|Re(λ−1)| and, thus,

k+1
k
| Im(λ−1)| ≥ | Im(λ−1)|+ |Re(λ−1)| ≥ |λ−1|.

Combining this with (3.25a) we obtain the estimate

σmin(α
n

∑
i=0

Mi +(λ−1)I)≥ | Im(λ−1)| ≥ k
k+1

|λ−1|. (3.27)

There exist ε1,k,ε2,k > 0 such that for all α ∈ (0,ε1,k), λ ∈ B(1,ε2,k),

|λ−1|
n−1

∑
i=0
|λ|i +α

n−1

∑
i=0

(
n−i−1

∑
j=0
|λ|(j))‖Mi‖2 <

k
k+1

.

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 17

Combining this inequality with (3.23) and (3.27) shows that for all α ∈ (0,ε1,k) and all λ ∈
B(1,ε2,k) with Re(λ) < 0 and λ 6∈ Ck the inequality (3.26) holds and, thus, that P(α,λ) is non-
singular. Therefore, for all α ∈ (0,min{ε1,ε1,k}) all latent roots of P(α,λ) that are contained in
B(1,min{ε2,ε2,k}) satisfy Re(λα)< 1 and λα ∈Ck.

Given k > 0, choose δ3 ≤ min{ε1,ε1,k} such that for all α ∈ (0,δ3) the latent roots of P(α, ·)
are in B(0,δ2)∪B(1,min{δ2,ε2,ε2,k}) ⊂ C. This is possible by continuity of polynomial roots
with respect to polynomial coefficients. From the previous steps it follows that all latent roots
λα ∈ B(1,δ2) of P(α, ·) are in fact contained in B(1,min{δ2,ε2,ε2,k}) and satisfy λα ∈Ck. �

Theorem 3.3 If M0,M1, ...,Mn are m×m complex matrices with ∑
n
i=0 Mi Hermitian and posi-

tive definite, then the block companion matrix (3.18) has spectral radius strictly less than 1 for
sufficiently small real α > 0.

Proof: Let δ2 ∈ (0,1/2) and k > 0 arbitrary. Lemma 3.2 guarantees the existence of
δ1 > 0 and δ3 ∈ (0,δ1) such that for all α ∈ (0,δ3) the latent roots of P(α, ·) are contained in
B(0,δ2)∪

(
B(1,δ2)∩Ck

)
⊂ B(0,1). Therefore, for all α ∈ (0,δ3), the spectral radius of C̃(α) is

strictly less than 1. �

Because ∑
n
i=0 Hi = H by (3.11) and H is symmetric positive definite by (2.8), Theorem 3.1 is

a special case of Theorem 3.3.

4 Numerical Example

4.1 Optimal Dirichlet Boundary Control of a 1D Advection Diffusion Equa-
tion

Our first example is a Dirichlet boundary control problem governed by a linear advection-diffusion-
reaction equation. Given T > 0, κ > 0, β > 0, γ,v≥ 0, and functions ŷ ∈ L2(0,T), f ∈ L2((0,1)×
(0,T)), the optimal control problem is

minimize
1
2

∫ T

0
(y(1, t)− ŷ(t))2dt +

β

2

∫ T

0
u2(t)dt (4.1a)

18 X. DENG AND M. HEINKENSCHLOSS

subject to

∂y(x, t)
∂t

−κ
∂2y(x, t)

∂x2 + v
∂y(x, t)

∂x
+ γy(x, t) = f (x, t) x ∈ (0,1), t ∈ (0,T), (4.1b)

∂y(1, t)
∂x

= 0 t ∈ (0,T), (4.1c)

y(0, t) = u(t) t ∈ (0,T), (4.1d)
y(x,0) = y0(x) x ∈ (0,1). (4.1e)

This problem has a unique solution u ∈ L2(0,T) and corresponding state y ∈W (0,T). See, e.g.,
[16, Ch.3] or [13] for details.

We will discretize the problem using piecewise linear finite elements in space and backward
Euler in time. This leads to a fully discretized problem of the type (2.1). We will present the
details below. Theorem 3.1 guarantees convergence of the parallel-in-time gradient-type method
for sufficiently small step size α, but unfortunately does not provide bounds on the feasible step
sizes. We use this simple example to numerically explore the dependence of step sizes.

The optimal control problem is discretized in space using piecewise linear finite elements. This
leads to

minimize
1
2

∫ T

0
(y(t)− ŷ(t))T Q(y(t)− ŷ(t))dt +

1
2

∫ T

0
u(t)T Ru(t)dt (4.2a)

subject to

M
d
dt

y(t)+Ay(t) = Bu(t)+ f (t), t ∈ (0,T), (4.2b)

y(0) = ygiven. (4.2c)

Here y(t) ∈ IRny , ny is the number of spatial subintervals in (0,1), and u(t) ∈ IRnu , nu = 1.
To discretize (4.2) in time we use the backward Euler method with time step size ∆t = T/K

and time steps tk = ∆t k, k = 0, . . . ,K. This leads to the problem

minimize
∆t
2

K−1

∑
k=0

(yk+1− ŷ(tk+1))
T Q(yk+1− ŷ(tk+1))+

∆t
2

K−1

∑
k=0

uT
k+1Ruk+1 (4.3a)

subject to

(M+∆tA)yk+1 = ∆tBuk+1 +∆tMyk +∆t f (tk+1), k = 0, . . . ,K−1, (4.3b)
y0 = ygiven. (4.3c)

The fully discretized problem (4.3) is of the type (2.1) if we set

Ak = ∆t(M+∆tA)−1M, Bk = ∆t(M+∆tA)−1B, ck = ∆t(M+∆tA)−1 f (tk+1),

Qk = ∆tQ, Rk = ∆tR, dk =−∆tQŷ(tk), ek = 0,

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 19

and perform an index shift uk+1→ uk. The matrices (M+∆tA)−1M and (M+∆tA)−1B are never
formed explicitly, but linear systems with matrix (M +∆tA) are solved whenever matrix-vector
products of the type (M+∆tA)−1Mv or (M+∆tA)−1Bw have to be computed.

On our computations we use T = 10, β = 0.1, κ = 0.001, v = 5, γ = 1, f (x, t) = 0, y0(x) = 0,
and ŷ(t) = sin(t2). Furthermore, our discretized uses ny = 128 spatial subintervals in (0,1), and
K = 1000 time steps.

The speed of convergence of the parallel gradient-type method depends the step size α. To
estimate the optimal step size for a given number N of time subintervals, we conduct the following
experiment. Given a number of time subintervals N we subdivide 0, . . . ,K into approximately
equally sized groups. In the case where N does not divide the number of time steps K, we split the
time steps so that 0 ≤ (Ki−Ki−1)− (K j−K j−1)≤ 1 for all 1≤ i < j ≤ N. Then for a number of
equally distributed time steps α ∈ (0.3,5) we run the parallel gradient-type algorithm started with
zero initial guess until the error between computed control u(j) and exact control u(∗), computed
solving (4.3) with high accuracy, is less 10−6, or a maximum number of iterations is exceeded.
For N ∈ {1, ...,100} we report the step size α for the parallel gradient-type algorithm requires
the fewest iterations. These step size α are shown in Figure 4.1. We note that the optimal step
sizes depend on other problem data as well and, thus, step sizes that are good for the 1D example
problem (4.1) may not be good for other problems, such as (4.4) below.

number N of time subintervals
0 10 20 30 40 50 60 70 80 90 100

b
e
s
t
s
te

p
 s

iz
e
 α

0

0.5

1

1.5

2

2.5

Figure 4.1: Optimal step-sizes α for varying number N of time subdomains for the 1D example
problem.

4.2 Optimal Control of a 3D Advection Diffusion Equation
We consider an optimal control problem governed by an advection diffusion reaction PDE posed
on the spatial domain Ω ⊂ R3 and time domain(0,T). Let Ωo ⊂ Ω be the observation region and

20 X. DENG AND M. HEINKENSCHLOSS

let Ωc ⊂ Ω be the domain on which the control is applied. Let χΩc denote the indicator function
of the control domain Ωc. Given scalars κ > 0, β > 0, γ ≥ 0, the advection v ∈ R3, and functions
ŷ ∈ L2(Ωo× (0,T)), f ∈ L2(Ω× (0,T)), the optimal control problem is

minimize
1
2

∫ T

0

∫
Ωo

(y(x, t)− ŷ(x, t))2dxdt +
β

2

∫ T

0

∫
Ωc

u2(x, t)dxdt (4.4a)

subject to

∂y(x, t)
∂t

−κ∆y(x, t)+ v ·∇y(x, t)+ γy(x, t) = f (x, t)+χΩc(x)u(x, t), x ∈Ω, t ∈ (0,T), (4.4b)

∇y(x, t) ·n = 0, x ∈ ∂Ω, t ∈ (0,T), (4.4c)
y(x,0) = ygiven(x), x ∈Ω. (4.4d)

This problem has a unique solution u ∈ L2(Ωc× (0,T)) and corresponding state y ∈W (0,T). See,
e.g., [16, Ch.3] or [13] for details.

We consider Ω = (0,1)3. The optimal control problem is discretized in space using a standard
cell-centered finite volume method with hexahedral cells of size (1/n1)× (1/n2)× (1/n3) [9, Sec.
3.3]. We assume that the observation region Ωo is a hexahedron given as the union of ` cells and
that the control region Ωc is a union of hexahedra given as the union of nu cells. This leads to the
semidiscretized problem (4.2) where y(t) ∈ IRn, ny = n1n2n3, and u(t) ∈ IRnu .

To discretize (4.2) in time we use the backward Euler method with time step size ∆t = T/K
and time steps tk = ∆t k, k = 0, . . . ,K. This leads to the fully discretized problem (4.3), which is of
the type (2.1).

Our implementation uses Epetra linear algebra libraries, AztecOO linear solvers, and ML
multigrid preconditioning packages from the Trilinos Project [11] to solve the linear systems with
matrices M+∆tA and (M+∆tA)T . Computations are performed on the Rice University DAVinCI
cluster. 1

For our numerical example we choose the control region Ωc = (0.1,0.3) × (0.2,0.8) ×
(0.2,0.8)∪ (0.7,0.9)× (0.2,0.8)× (0.2,0.8), the observation region Ωo = (0.4,0.6)× (0,1)×
(0,1), and the final time T = 8 or T = 16. In the objective (4.4a) we have ŷ(x, t) = 10[(x2−
0.5)cos(2πt) + (x3− 0.5)sin(2πt)]3 and β = 0.001. In the PDE (4.4b), κ = 0.1, v = [1,1,1]T ,
γ = 0.01, and ygiven(x) = 0. Our discretization we use K = 200 (if T = 8) or K = 400 (if T = 16)
time steps and a spatial discretization n1 = n2 = n3 = 10.

So far, there is no good a-priori way of determining a good step size for the gradient type
method, and adaptive steps size selection is part of future research. Currently, we select the
the step size by examining the iteration for a few different step sizes and then selecting our
α from these trials. For the case T = 8, K = 200, this resulted in the step size α = 2400 for
N = 1,4,6,8,12,16,20 time subintervals, and α = 2060,1860,1500,1000 for N = 25,30,40,60.

1This work was supported in part by the Data Analysis and Visualization Cyberinfrastructure funded by NSF under
grant OCI-0959097 and Rice University.

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 21

For the case T = 16, K = 400, this resulted in the step size α = 950 for N = 1,30,40,50 time
subintervals, and α = 900,800,650 for N = 60,70,80.

Figure 4.2 shows the speeds-ups. For each of the two cases (T = 8, K = 200 and T = 16,
K = 400) we include two speeds-up curves. One shows speed-up measured by number of iterations
of gradient method divided by the number of iterations of the parallel-in-time gradient method
for various N over the number of cores N. Thus, if I(N) is the number of iterations needed by
parallel-in-time method with N subintervals and cores, one speed-up curve shows I(1)/(I(N)/N).
Although this ignores communication cost it is a good indicator of actual speed-up, which is shown
in the other curve. The actual speed-up is measured by run time of the gradient method divided
by the run time of the parallel-in-time gradient method for various N. That is, if t(N) is the run
time required by parallel-in-time method with N subintervals and cores, the actual speed-up is
t(1)/t(N). The number N of time-subintervals changes the parallel-in-time gradient-type method
and its convergence rate. If the number of time-subintervals is too large, convergence deteriorates
and negatively impact speed-up obtained by parallelizing the work performed in each iteration of
the parallel-in-time gradient-type method. For our problem settings we observe excellent speed-
ups for up to N ≈ 20 and N ≈ 50 time subdomains. It is also important to note that the speed-up
due to time decomposition multiplies existing speed-up in the solution of the systems with matrices
M+∆tA or (M+∆tA)T that arise in the solutions of sub-time interval state and adjoint equations.
Our spatial discretization is small so that no such parallelization in the time-stepping was useful.

5 Conclusions

We have introduced a new parallel-in-time gradient-type method for convex linear-quadratic
DTOC problems and proved its convergence for sufficiently small step-size. Since our new method
resembles the classical gradient method, a given implementation of the classical gradient method
can be easily modified to implement our parallel-in-time gradient-type method. We observed
nearly perfect speed-up for modest numbers time subdomains. The speed-up due to time de-
composition multiplies existing speed-up in the solution of state and adjoint equations, e.g, due to
parallel solution of linear systems arising in the time-stepping.

The convergence theory presented in this paper uses the structure of linear-quadratic DTOC
problems, but the formulation of our parallel-in-time gradient-type method can be extended to
optimal control problems governed by ordinary or partial differential equations. Moreover, it can
conceptually be extended to to general nonlinear problems. Applications and analyses of these
extensions are part of ongoing research.

Although the gradient method can overall be effective for large-scale optimal control problems,
other methods, such as the conjugate-gradient method for convex linear-quadratic problems and
Newton-type methods for general nonlinear problems, exhibit superior convergence properties.
Therefore, parallel-in-time extensions of those methods will be useful.

We prove that the spectral radius of the block companion matrix, the iteration matrix cor-

22 X. DENG AND M. HEINKENSCHLOSS

1 4 6 8 12 16 20 25 30 40 50 60 70 80
number of time subdomains

0

10

20

30

40

50

60
sp

ee
d-

up

Figure 4.2: Speed-ups the parallel-in-time gradient method for two examples problems with end
time T = 8 and K = 200 time steps (red curves), and with end time T = 16 and K = 400 time
steps (blue curves). For each case two speed-up curves are shown. If I(N) denotes the num-
ber of iterations needed by parallel-in-time method with N subintervals and cores, the speed-up
curves indicated by ‘· · ·◦’ and ‘· · ·+’ show I(1)/(I(N)/N). If t(N) denotes the run time needed
by parallel-in-time method with N subintervals and cores, the curves indicated by ‘−�’ and ‘−∗’
show t(1)/t(N). Excellent speed-ups are obtained for up to N = 20 time domains when T = 8 and
K = 200 and for up to N = 50 time domains when T = 16 and K = 400 .

responding to our parallel-in-time gradient-type method, is strictly less than one for sufficiently
small step sizes and, therefore that our parallel-in-time gradient-type method converges. It would
be useful to have information about how small the step size has to be, relative to problem data, and
how small the spectral radius can become.

References
[1] A. T. BARKER AND M. STOLL, Domain decomposition in time for PDE-constrained opti-

mization, Comput. Phys. Commun., 197 (2015), pp. 136–143.

[2] M. BERGGREN AND M. HEINKENSCHLOSS, Parallel solution of optimal-control problems
by time-domain decomposition, in Computational Science for the 21st Century, M.-O. Bris-
teau, G. Etgen, W. Fitzgibbon, J. L. Lions, J. Periaux, and M. F. Wheeler, eds., Chichester,
1997, J. Wiley, pp. 102–112.

[3] D. P. BERTSEKAS, Nonlinear Programming, Athena Scientific, Belmont, Massachusetts,
second ed., 1999.

PARALLEL-IN-TIME GRADIENT-TYPE METHOD FOR DISCRETE TIME CONTROL 23

[4] T. CARRARO, M. GEIGER, AND R. RANNACHER, Indirect multiple shooting for nonlin-
ear parabolic optimal control problems with control constraints, SIAM J. Sci. Comput., 36
(2014), pp. A452–A481.

[5] A. COMAS, Time-Domain Decomposition Preconditioners for the Solution of Discretized
Parabolic Optimal Control Problem, PhD thesis, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 2005. Available as CAAM TR06–01.

[6] J. DE PILLIS, k-part splittings and operator parameter overrelaxation, J. Math. Anal. Appl.,
53 (1976), pp. 313–342.

[7] J. DE PILLIS AND M. NEUMANN, Iterative methods with k-part splittings, IMA J. Numer.
Anal., 1 (1981), pp. 65–79.

[8] J. E. DENNIS JR., J. F. TRAUB, AND R. P. WEBER, On the matrix polynomial, lamda-matrix
and block eigenvalue problems, Tech. Rep. CMU-CS-71-110, Computer Science Department,
Carnegie Mellon University, 1971.

[9] R. EYMARD, T. GALLOUËT, AND R. HERBIN, Finite volume methods, in Handbook of
numerical analysis, Vol. VII, P. G. Ciarlet and J. L. Lions, eds., Handb. Numer. Anal., VII,
North-Holland, Amsterdam, 2000, pp. 713–1020.

[10] M. HEINKENSCHLOSS, A time-domain decomposition iterative method for the solution of
distributed linear quadratic optimal control problems, J. Comput. Appl. Math., 173 (2005),
pp. 169–198.

[11] M. A. HEROUX, R. A. BARTLETT, V. E. HOWLE, R. J. HOEKSTRA, J. J. HU, T. G.
KOLDA, R. B. LEHOUCQ, K. R. LONG, R. P. PAWLOWSKI, E. T. PHIPPS, A. G.
SALINGER, H. K. THORNQUIST, R. S. TUMINARO, J. M. WILLENBRING, A. WILLIAMS,
AND K. S. STANLEY, An overview of the trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397–423.

[12] H. K. HESSE AND G. KANSCHAT, Mesh adaptive multiple shooting for partial differential
equations. I. Linear quadratic optimal control problems, J. Numer. Math., 17 (2009), pp. 195–
217.

[13] J.-L. LIONS, Optimal Control of Systems Governed by Partial Differential Equations,
Springer Verlag, Berlin, Heidelberg, New York, 1971.

[14] E. POLAK, Computational Methods in Optimization. A Unified Approach, Academic Press,
New York, London, Paris, San Diego, San Francisco, 1971.

[15] V. RAO AND A. SANDU, A time-parallel approach to strong-constraint four-dimensional
variational data assimilation, arXiv:1505.04515v1, (2015).

24 X. DENG AND M. HEINKENSCHLOSS

[16] F. TRÖLTZSCH, Optimal Control of Partial Differential Equations: Theory, Methods and
Applications, vol. 112 of Graduate Studies in Mathematics, American Mathematical Society,
Providence, RI, 2010.

[17] D. J. UHERKA AND A. M. SERGOTT, On the continuous dependence of the roots of a poly-
nomial on its coefficients, Amer. Math. Monthly, 84 (1977), pp. 368–370.

[18] S. ULBRICH, Preconditioners based on ‘parareal’ time-domain decomposition for time-
dependent PDE-constrained optimization, in Multiple Shooting and Time Domain Decom-
position Methods. MuS-TDD, Heidelberg, May 6-8, 2013, T. Carraro, M. Geiger, S. Körkel,
and R. Rannacher, eds., vol. 9 of Contributions in Mathematical and Computational Sciences,
Springer-Verlag, Heidelberg, 2015, pp. 203–232.

