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Abstract This paper introduces and studies the maximum k-plex problem,
which arises in social network analysis, but can also be used in several other
important application areas, including wireless networks, telecommunica-
tions, and graph-based data mining. We establish NP-completeness of the
decision version of the problem on arbitrary graphs. An integer programming
formulation is presented and basic polyhedral study of the problem is carried
out. A branch-and-cut implementation is discussed and computational test
results on the proposed benchmark instances are also provided.

Keywords maximum k-plex · maximum clique · integer programming ·
branch-and-cut · social network analysis

1 Introduction

In the wake of the information revolution, the interest in studying the network
structure of organizations, in particular criminal in nature, has increased
manifold. Social network concepts, despite their versatility, have come to the
forefront especially for these applications. A social network is usually repre-
sented by a graph, in which the set of vertices corresponds to the “actors” in
a social network and the edges correspond to the “ties” between them [45].
Actors can be people, and examples of a tie between two actors include the
acquaintance, friendship, or other type of association between them, such as
visiting the same social event or place at the same time. Alternately, actors
can be companies, with ties representing business transactions between them.
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Thus, graphs can be used to conveniently model any such information and
to make important deductions.

This paper introduces and studies the maximum k-plex problem, which
arises in analysis of cohesive subgroups in social networks. Social cohesion
is often used to explain and develop sociological theories. Members of a co-
hesive subgroup tend to share information, have homogeneity of thought,
identity, beliefs, behavior, even food habits and illnesses [52]. Social cohesion
is also believed to influence emergence of consensus among group members.
Examples of cohesive subgroups include religious cults, terrorist cells, crimi-
nal gangs, military platoons, sports teams and conferences, work groups etc.
Modeling a cohesive subgroup mathematically has long been a subject of
interest in social network analysis. One of the earliest graph models used for
studying cohesive subgroups was the clique model [35]. A clique is a subgraph
in which there is an edge between any two vertices. However, the clique ap-
proach has been criticized for its overly restrictive nature [2,52] and modeling
disadvantages [47,25].

Alternative approaches were suggested that essentially relaxed the defini-
tion of cliques. Clique models idealize three important structural properties
that are expected of a cohesive subgroup, namely, familiarity (each vertex
has many neighbors and only a few strangers in the group), reachability (a
low diameter, facilitating fast communication between the group members)
and robustness (high connectivity, making it difficult to destroy the group
by removing members). Different models relax different aspects of a cohe-
sive subgroup. [34] introduced a distance based model called k-clique and [2]
introduced a diameter based model called k-club. These models were also
studied along with a variant called k-clan by Mokken [38]. However, their
originally proposed definitions required some modifications to be more mean-
ingful mathematically. These drawbacks are pointed out and the models are
appropriately redefined in [7], as described in Section 2. All these models em-
phasize the need for high reachability inside a cohesive subgroup and have
their own merits and demerits as models of cohesiveness. The focus of this
paper is on a degree based model introduced in [47] and called k-plex. This
model relaxes familiarity within a cohesive subgroup and implicitly provides
reachability and robustness.

Some direct application areas of social networks include studying terror-
ist networks [43,9], which is essentially a special application of criminal net-
work analysis that is intended to study organized crimes such as terrorism,
drug trafficking and money laundering [36,21]. Concepts of social network
analysis provide suitable data mining tools for this purpose [17]. Figure 1
shows an example of a terrorist network, which maps the links between ter-
rorists involved in the tragic events of September 11, 2001. This graph was
constructed in [32] using the public data that were available before, but col-
lected after the event. Even though the information mapped in this network
is by no means complete, its analysis may still provide valuable insights into
the structure of a terrorist organization. Another important application of
these ideas is in internet research, where cohesive subgroups correspond to
collections of densely connected web sites [49]. Topically related web sites
are thus identified and organized to facilitate faster search and retrieval of
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Fig. 1 The network surrounding the tragic events of September 11, 2001.

information from the web. Clique and other low diameter models have been
popular in the area of wireless communication [18,33]. Clustering the con-
nectivity graph of a wireless network introduces a hierarchy, otherwise absent
in these dynamic networks. Existence of a hierarchy facilitates routing of in-
formation through the network. Efficient resource management, routing and
better throughput performance can be achieved through adaptive clustering
of these mobile nodes [48]. A similar principle is also used in organizational
management, where social network analysis is also used to study organiza-
tional structure to suggest better work practices and improve communication
and work flow [22]. Graph based data mining [19] has been used in study-
ing structural properties of social networks [40] and stock markets [12,11],
unraveling molecular structures to facilitate drug discovery and compound
synthesis [24,16], and for identifying frequently occurring patterns in data
sets (modeled as graphs) [51,10].

In spite of its potential applicability to a number of important practical
situations, the optimization problems concerned with finding large k-plexes
in a graph have not been studied from the mathematical programming per-
spective. It is surprising that since the introduction of the k-plex model and
establishing its basic mathematical properties in the late 70’s [47], it has been
completely overlooked in mathematics, mathematical programming and com-
puter science literature. This paper introduces the maximum k-plex problem
to the mathematical programming community and analyzes its basic prop-
erties, including the computational complexity, mathematical programming
formulations, and polyhedral structure. Results of computational experience
with a branch-and-cut algorithm for finding a maximum k-plex are also pro-
vided. The remainder of this paper is organized as follows. Basic definitions,
notations and background information of interest are presented in Section 2.
Computational complexity analysis of the problem is carried out in Section 3.
Section 4 introduces a binary integer programming formulation for the prob-
lem, presents some basic polyhedral study of the problem, and develops valid
inequalities. A branch-and-cut algorithm is presented in Section 5, including
implementation details and computational test results. Furthermore, the pro-
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posed formulation is studied in the context of the maximum clique problem.
Finally the paper is concluded with a summary and directions for future work
in Section 6.

2 Definitions, Notations, and Background

Let G = (V,E) be a simple undirected graph representing a social network,
dG(u, v) denote the length of a shortest path between vertices u and v in
G and diam(G) = max

u,v∈V
dG(u, v) be the diameter of G. Denote by G[S] =

(S, E ∩ (S×S)), the subgraph induced by S. A subset of vertices S ⊆ V is a
k-clique if dG(u, v) ≤ k for all u, v ∈ S, and it is a k-club if diam(G[S]) ≤ k.
Note that a shortest path between two vertices in S may include vertices
outside S. Hence, for a k-clique S there can exist two vertices u, v ∈ S such
that dG(u, v) ≤ k, but dG[S](u, v) > k and thus u and v cannot exist in
a k-club together. This is illustrated in Figure 2: The set {2, 3, 4, 5, 6} is a
2-clique but not a 2-club. In a social network, it may be unreasonable to
expect a cohesive subgroup to require outside members, and the concept
of k-club overcomes this weakness common to k-cliques by bounding the
diameter of the induced subgraph. From the definitions and above example
it follows that any k-club in G is also a k-clique, but the converse is not true.
However, k-clubs have certain drawbacks that we illustrate using a simple
example involving 2-clubs. It is possible that there exists one vertex in a

1

5 2

34

6

Fig. 2 2-clique vs. 2-club

2-club that is adjacent to all other vertices, making it a 2-club, but these
neighbors are poorly connected among themselves. This is demonstrated by
star graphs which have diameter two as the central vertex is adjacent to all
other vertices, but the neighbors of the central vertex have no edges between
them. Although these models ensure reachability, they may lack cohesiveness
in terms of degree and connectivity. In particular, removal of just one central
vertex in a star graph completely disconnects the graph.

The decision version of maximum k-clique and k-club problems are shown
to be NP-complete on arbitrary graphs and on graphs with diameter more
than k in [7]. That paper also studies the basic polyhedral properties and
facets of the 2-club polytope. Heuristics for the maximum k-club problem are
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presented in [14] and an exact algorithm for the same is developed in [15].
Note that these models reduce to a clique for k = 1 and are relaxations of
cliques for k > 1.

Degree based models of cohesion, which overcome the drawbacks inherent
in the definitions of k-clique and k-club, were first introduced in [47] and [46].
Seidman [46] introduced the concept of a k-core, which is a subgraph with
minimum degree at least k. In other words, S ⊆ V is a k-core if |N(v)∩S| ≥
k ∀ v ∈ S, where N(v) denotes the set of neighbors of a vertex v ∈ V in
G. However, k-cores were noted to only indicate dense regions of the graph
and not necessarily identify a cohesive subgroup [46,52]. As suggested by
Seidman, this approach was only to produce global measures that captured
the cohesive subgroups as well as regions surrounding them. We will now
describe a simple greedy algorithm that finds the largest k-core in a graph in
polynomial time. Pick a vertex v of minimum degree δ(G), if δ(G) ≥ k then
we have a k-core. If δ(G) < k, then that vertex cannot be in a k-core. Hence,
delete the corresponding vertex, G := G − v and continue recursively until
a maximum k-core or the empty set is found. Note that even though these
structures are easy to find, they only point out dense regions of the graph
where interesting subgroups may be found.

The degree based model studied in this paper is called k-plex and was
introduced by Seidman and Foster in [47]. A subset of vertices S is said to
be a k-plex if the degree of every vertex in the induced subgraph G[S] is at
least |S| − k. That is, S ⊆ V is a k-plex if the following condition holds:

degG[S](v) = |N(v) ∩ S| ≥ |S| − k ∀ v ∈ S.

A k-plex is said to be maximal if it is not strictly contained in any other
k-plex. We propose calling the cardinality of the largest k-plex in the graph
as the k-plex number and denote it by ρk(G). The maximum k-plex problem is
to find the largest k-plex of the given graph. Note that, as with the maximum
k-clique and maximum k-club problems, this reduces to the maximum clique
problem [13] when k = 1 and is a relaxation of the clique requirement for
all other k > 1, allowing for at most k − 1 non-neighbors inside the set.
Figure 3 illustrates this concept: The set {1, 2, 3, 4} is a 1-plex (clique), sets
{1, 2, 3, 4, 5} and {1, 2, 3, 4, 6} are 2-plexes (maximal and maximum) and the
entire graph is a 3-plex.

Apart from the basic definition that a graph G is k-plex if δ(G) ≥ n− k,
an alternate characterization of k-plexes has been established in the following
theorem from [47]. Let N [v] denote the closed neighborhood of a vertex v,
that is N [v] = {v} ∪N(v).

Theorem 1 ([47]) G is a k-plex if and only if for any k-element subset of

vertices {v1, . . . , vk} ⊆ V , V =
k⋃

i=1

N [vi].

In other words, the above theorem states that if G is a k-plex then any k
vertices form a dominating set in the graph (A subset S of vertices of the
graph G = (V, E) is called a dominating set if ∪i∈SN [i] = V ). For instance,
in the graph shown in Figure 3, {1, 5} is not a dominating set, but with
any other vertex, say 6, the resulting set {1, 5, 6} is a dominating set, and
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Fig. 3 Illustration of k-plexes for k = 1, 2, 3

so is any other triplet of vertices. The paper by Seidman and Foster also
establishes some of the basic graph theoretic properties of a k-plex that are
stated here. Let graph G be a k-plex. Then,

1. Any vertex-induced subgraph of a k-plex is a k-plex.
2. If k < (n+2)

2 , then diam(G) ≤ 2.
3. κ(G) ≥ n− 2k + 2,

where the vertex connectivity κ(G) is the minimum number of vertices whose
removal results in a disconnected or trivial graph [29].

By definition, members of a k-plex S can have at most k−1 non-neighbors
inside S. Thus, k-plexes with low k values (k = 2, 3) provide good relaxations
of clique that closely resemble the cohesive subgroups that can be found in
real life social networks. In addition, the above results indicate that a k-plex,
besides being a natural generalization of a clique, also retains the properties
of a clique such as low diameter and high connectivity, for low values of k.
The k-plex model overcomes the disadvantages of k-cliques and k-clubs by
directly limiting the number of non-neighbors inside the cohesive subgroup.
This structure imposes a degree bound that varies with the size of the group
and hence ensures a cohesive subgroup even as the size of the group varies.
Implicitly, it also achieves reachability and robustness. By allowing some
strangers in a social group, k-plex provides a more realistic alternative to
model cohesive subgroups in a social network.

Maximum clique problem is closely related to another well known graph
problem, which is the maximum independent set problem. An independent
set (or stable set) is a subset of vertices such that there does not exist an
edge between any two vertices in that set. In other words, the subgraph
induced by an independent set is edgeless. A subset of vertices forms a clique
in G = (V, E) if and only if it forms an independent set in the complement
graph Ḡ = (V, Ē). Naturally, the k-plex can also be closely related to a similar
problem on the complement graphs which we formalize as follows. We call a
subset of vertices S of a graph G = (V, E) a co-k-plex if |N(i)∩S| ≤ k−1 for
all i ∈ S. In other words, the induced subgraph G[S] has a maximum degree
of k− 1 or less. It should be noted that S is a co-k-plex in G if and only if S
is a k-plex in the complement graph Ḡ. In particular, 1-plex is a clique and
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a co-1-plex is an independent set. Thus, k-plexes and co-k-plexes provide a
systematic way to generalize two important graph models.

3 Computational Complexity

This section presents computational complexity results for the problem of
interest. The decision version of the maximum k-plex problem can be stated
as follows:

k-Plex: Given a simple undirected graph G = (V, E) and positive
integer constants c, k, does there exist a k-plex of size c in G?

Theorem 2 k-Plex is NP -complete for any constant positive integer k.

Proof. We prove this by reducing Clique [26], a well-known NP-complete
problem, to k-Plex. Given an instance 〈G = (V, E), c〉 of Clique, we con-
struct an instance 〈G′ = (V ′, E′), c′〉 in polynomial time such that G has a
clique of size c if and only if G′ has a k-plex of size c′. To construct G′, we
expand G by adding k − 1 copies of the complete graph of order n = |V |.
Denote the vertex set of the rth such copy by Vr, r = 1, . . . , k − 1, where

Vr = {1r, . . . , nr}, and let R =
k−1⋃
r=1

Vr. Put V ′ = V ∪R and E′ = E ∪ Ê ∪ Ẽ,

where
Ê = {(i, jr) : i ∈ V, jr ∈ Vr, i 6= j, r = 1, . . . , k − 1}

and
Ẽ = {(ip, jr) : ip ∈ Vp, jr ∈ Vr, i 6= j, p, r = 1, . . . , k − 1}.

In other words, the set Ê represents the edges between V and R, where
every vertex u ∈ V is connected to every vertex in every complete graph
except its copies, i.e. u is adjacent to every vertex in R \ {u1, . . . , uk−1}.
The set Ẽ includes the cross edges between distinct Vp and Vr, as well as
all possible edges between vertices in Vp, p = 1, . . . , k − 1. In other words,
every vertex up ∈ Vp, p = 1, . . . , k − 1 is adjacent to all the vertices in
Vr \{ur}, r = 1, . . . , k−1. Putting c′ = c+(k−1)n completes the reduction.
Note that the instance 〈G′ = (V ′, E′), c′〉 can be constructed in polynomial
time. Figure 4 illustrates this transformation when G is a path on three
vertices a, b and c.

We now show that if there exists a clique of size c in G then G′ has a k-plex
of size c′. Let C ⊆ V induce a clique of size c = |C| in G. We claim that the
set S = C∪R, where |S| = c+n(k−1) = c′, is a k-plex. For any u ∈ C, there
exist c− 1 neighbors inside C, and (n− 1)(k − 1) neighbors in R. Thus, for
u ∈ C, degG[S](u) = c−1+(n−1)(k−1) = c′−k. For any vr ∈ R, there exist
(n−1)(k−1) neighbors in R and c neighbors in C if v /∈ C, and c−1 neighbors
in C if v ∈ C. Again, for vr ∈ R, degG[S](vr) ≥ c−1+(n−1)(k−1) = c′−k.
Hence, S induces a k-plex of size c′.

We now establish the other direction stating that if there exists a k-plex
of size c′ in G′ then G has a clique of size c. Let S be a k-plex of size
c′ = c + n(k − 1). Let P = R \ S denote the set of vertices from R not
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Fig. 4 Illustration of the 3-Plex instance G′. Original graph G in box-vertices

and heavy edges. Ê ∪ Ẽ is denoted by dashed edges.

included in the k-plex and let |P | = p. Then, the c′ vertices in S consist of
n(k − 1) − p vertices in S ∩ R and c + p vertices in S ∩ V . Without loss of
generality, suppose that S ∩ V = {1, . . . , c + p} and further assume that for
each i ∈ S ∩ V there exist qi copies of i in P that are left out of the k-plex.
Since every i ∈ S ∩ V has p− qi neighbors in P , we know that

|N(i) ∩ (S ∩R)| = (n− 1)(k − 1)− (p− qi).

Since S is a k-plex, ∀ i ∈ S ∩ V :

degG[S](i) = |N(i) ∩ (S ∩R)|+ |N(i) ∩ (S ∩ V )| ≥ c + n(k − 1)− k,

⇒ |N(i) ∩ (S ∩ V )| ≥ c + p− 1− qi. (1)

Recall that each qi is a non-negative integer counting copies of vertex i ∈ S∩V
in P and note that P can contain vertices that are not copies of any vertex
in S ∩ V . Thus, we have

∑c+p
i=1 qi ≤ p . Hence, there can exist at most p

terms, qi, in that sum that are strictly greater than 0, meaning that there
exist at least c terms in that equation, that are equal to 0. Without loss of
generality, suppose that qi = 0, i ∈ {1, . . . , c}. Now, let C = {1, . . . , c}. We
already know from (1) that for all i ∈ C ⊆ S ∩ V = {1, . . . , c + p} :

|N(i) ∩ (S ∩ V )| ≥ c + p− 1− qi = c + p− 1.

But |S ∩ V | = c + p, so for all i ∈ C,

|N(i) ∩ (S ∩ V )| = c + p− 1.
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Thus, every vertex in C ⊆ S ∩V is adjacent to every vertex in S ∩V . Hence,
every vertex in C is adjacent to every other vertex in C. Therefore C induces
a clique of size c in G. This completes the proof. ¤

This complexity result demonstrates that the maximum k-plex problem is
hard not only because it is a generalization of the maximum clique problem,
but it is a hard problem in its own respect, as Theorem 2 states that the
decision version of the problem is NP-complete for every constant k.

4 Mathematical Programming Approaches

This section presents an integer programming formulation of the maximum
k-plex problem followed by preliminary polyhedral study of the problem.
Valid inequalities for the polytope under study are also presented.

4.1 Integer Programming Formulation

Given a graph G = (V, E) with |V | = n, recall that N [i] is the closed neigh-
borhood of a vertex i and ρk(G) is the k-plex number of G. Let d̄i = |V \N [i]|
denote the degree of vertex i in the complement graph Ḡ = (V, Ē). Further
assume that k > 1 since the k = 1 case yields the well known maximum
clique problem. The following 0-1 program finds the largest k-plex in G.

ρk(G) = max
∑

i∈V

xi (2)

subject to: ∑

j∈V \N [i]

xj ≤ (k − 1)xi + d̄i(1− xi) ∀ i ∈ V (3)

xi ∈ {0, 1} ∀ i ∈ V (4)

In this formulation, xi = 1 if and only if i ∈ V is in the k-plex and xi = 0
otherwise. Constraint (3) ensures that if a vertex i is in the k-plex then it
has at most k − 1 non-neighbors inside the k-plex. The constraint is made
redundant for vertices not in the k-plex.

4.2 Polyhedral Study

Let Q(G) ⊆ {0, 1}n denote the collection of feasible binary vectors of the
aforementioned formulation (2) - (4). Then the k-plex polytope Pk(G) =
conv(Q(G)), the convex hull of the feasible points. The following theorem
establishes the trivial facets of the k-plex polytope.

Theorem 3 Let Pk(G) denote the k-plex polytope of a given graph G =
(V, E), where k > 1. Then,

1. dim(Pk(G)) = n.
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2. xi ≥ 0 induces a facet of Pk(G) for every i ∈ V .
3. xi ≤ 1 induces a facet of Pk(G) for every i ∈ V .

Proof: We will use following notations in the proof. Let ei be the unit vector
with ith component 1 and the rest 0; eij = ei + ej

1. This is shown by demonstrating n + 1 affinely independent points in
Pk(G). The points 0, e1, e2, . . . , en are clearly n + 1 affinely independent
points in Pk(G) ⊂ Rn. Hence, dim(Pk(G)) = n.

2. Let F = {x ∈ Pk(G) : xi = 0}. Since an empty set or any vertex by itself
is a k-plex, we have 0, ej for all j ∈ V \{i} forming n affinely independent
points in F . This shows that dim(F ) = n− 1 and it is a facet.

3. Let F ′ = {x ∈ Pk(G) : xi = 1}. We first observe that every vertex and
any pair of vertices form a k-plex for any k such that 1 < k < n. Then
ei and eij for all j ∈ V \ {i} form n affinely independent points in F ′,
indicating that dim(F ′) = n− 1 and it is a facet. ¤

4.3 Valid inequalities

The following valid inequalities are derived by identifying induced subgraphs
that are not k-plexes and hence cannot be present in any k-plex. Although the
result that every vertex-induced subgraph of a k-plex is a k-plex, is presented
in [47], the following explanation is given here for the sake of clarity. Note
that if G is a k-plex, the minimum degree δ(G) is at least n−k. In the graph
G′ obtained by deleting any vertex from G, the degree of all the vertices and
hence the minimum degree, can drop by at most 1. Hence, the new graph
continues to be a k-plex as δ(G′) ≥ (n−1)−k. Also note that any k-element
subset of vertices is a k-plex and any k-plex is also a k+r-plex (1 ≤ r ≤ n−k).
Before we introduce the first family of inequalities, we present the following
two lemmas.

Lemma 1 Let k be even. Then, there does not exist a co-k-plex that contains
a k-plex of size 2k − 1.

Proof. Let G be a co-k-plex on n vertices. Assume that n ≥ 2k − 1 as the
result is trivial otherwise. Now suppose that S is a k-plex of size 2k − 1 in
G. Then we have

|N(i) ∩ S| ≥ 2k − 1− k = k − 1 ∀i ∈ S.

Since G is co-k-plex we have,

|N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S.

The two conditions then imply that the induced graph G[S] is regular with
all degrees equal to k−1 and is of order 2k−1. But k−1 is odd and we cannot
have an odd number of vertices of odd degree. This contradiction establishes
that S does not exist. ¤

Note that this bound is sharp since the graph family Gk = Kk ∪Kk−1,
the union of complete graphs, for each k forms a co-k-plex of size 2k − 1,
which contains Kk−1 ∪Kk−1, a k-plex of size 2k− 2. Figure 5 illustrates this
when k = 4.



Clique Relaxations in Social Network Analysis 11

Lemma 2 Let k be odd. Then, there does not exist a co-k-plex that contains
a k-plex of size 2k.

Proof. As before, let G be a co-k-plex on n vertices (n ≥ 2k). Suppose that
S is a k-plex of size 2k in G. Then we have

|N(i) ∩ S| ≥ 2k − k = k ∀i ∈ S.

Since G is co-k-plex we have,

|N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S.

This contradiction establishes that S does not exist. ¤
This bound is also sharp since the following family of graphs have 2k

vertices forming a co-k-plex containing a k-plex of size 2k− 1. Construct the
graph Gk = (V, E), where

V = V ′ ∪ {2k}, V ′ = {1, . . . , 2k − 1},
and

E = {(i, j) : i ∈ V ′ and j = i + 1, . . . ,

(
i +

k − 1
2

)
mod (2k − 1)}.

Maximum degree in Gk is k − 1 and hence it is a co-k-plex of order 2k.
The induced subgraph Gk[V ′] is a (k − 1)-regular k-plex of order 2k − 1 in
which every vertex has exactly k− 1 neighbors and non-neighbors each. It is
also known as an antiweb and its complement is known as a web. Webs were
introduced in [50] to generalize odd hole and antihole inequalities developed
in [41] for the independent set polytope. Figure 5 illustrates this when k = 5.

k = 5
9
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4

3

2
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k = 4

1 2

3

1’ 2’

3’4

Fig. 5 Graphs demonstrating the sharpness of the bounds in Lemmas 1 and 2.
The circled vertices form the said k-plexes

We next present three types of valid inequalities for the k-plex polytope:
Independent set inequalities, hole inequalities, and co-k-plex inequalities.
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Independent Set Inequalities. Let I ⊆ V be an independent set. Note that
no k-plex can contain an independent set of more than k vertices as k + 1
or more independent vertices do not form a k-plex. Let Ik+1 represent the
collection of all maximal independent sets of size k + 1 or more in G. Then
we have the following family of valid inequalities.

∑

i∈I

xi ≤ k ∀ I ∈ Ik+1 (5)

Hole Inequalities. Let H ⊆ V be a hole (induced chordless cycle). If |H| ≤
k+2, then H is a k-plex. Now suppose |H| > k+2, then H is not a k-plex and
for every proper subset S ⊂ H, we have δ(G[S]) ≤ 1. Hence, if |S| − k ≥ 2,
S is not a k-plex. Thus, any k-plex can contain at most k + 1 vertices from
the hole and this bound is sharp. Let Hk+3 represent the collection of all
holes of size k + 3 or more in G. Then we have the following family of valid
inequalities. ∑

i∈H

xi ≤ k + 1 ∀ H ∈ Hk+3 (6)

Co-k-plex Inequalities. Lemmas 1 and 2, when combined, imply that the
size of a maximum k-plex in any co-k-plex is less than or equal to rk =
2k−1− 1+(−1)k

2 . Let Jrk+1 represent the collection of all maximal co-k-plexes
of size more than rk in G. We have the following family of valid inequalities.

∑

i∈J

xi ≤ rk ∀ J ∈ Jrk+1 (7)

Observe that, if J is a maximal co-k-plex, there does not exist another
co-k-plex of which J is a proper subset. Then, for every v ∈ V \ J , at least
one of the following conditions must hold.

1. ∃ j ∈ J ∩N(v) such that |N(j)∩ J | = k− 1 and including v would cause
degree of j in the induced subgraph to be k.

2. |N(v) ∩ J | ≥ k and hence upon inclusion v would have degree k or more
in the induced subgraph.

The next theorem uses this observation to show that for k = 2 the co-2-plex
inequalities actually form facets for the 2-plex polytope, P2(G).

Theorem 4 Let P2(G) denote the 2-plex polytope described in Section 4.2.
Then, the co-2-plex inequality given by,

∑

i∈J

xi ≤ 2, (8)

where J is a maximal co-2-plex with |J | ≥ 3, induces a facet of P2(G).
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Proof. First, recall that any 2 vertices from J form a 2-plex. Second, for
every v ∈ V \ J , the above two conditions for a maximal co-2-plex imply the
existence of two vertices u,w ∈ J such that {v, u, w} is a 2-plex. Indeed, if
the first case holds, let u ∈ J ∩ N(v), then N(u) ∩ J = {w} and {v, u, w}
is a 2-plex. If the second case holds, {u,w} ⊆ J ∩N(v) and again {v, u, w}
is a 2-plex. We use these observations to construct n affinely independent
vectors that lie on the face defined by F = {x ∈ P2(G) :

∑
i∈J

xi = 2}, so F is

(n−1)-dimensional and hence it is a facet. Without loss of generality, assume
that J = {1, . . . , r} and V \ J = {r + 1, . . . , n}, where r ≥ 3. Let, as before,
ei ∈ Rn denote the unit vector with ith component one and all others zero.
The said affinely independent vectors x1, . . . , xn are constructed as follows.
xv = ev + er, ∀ v = 1, . . . , r − 1;
xr = e1 + e2 (note that xr is distinct from x1, . . . , xr−1 as r ≥ 3);
xv = ev + eu + ew, ∀ v = r + 1, . . . , n, where for each v ∈ V \ J , u,w ∈ J
are the particular vertices described before. Clearly, xv ∈ F and it can be
easily verified that these vectors are affinely independent. Thus, the co-2-plex
inequalities produce facets for the 2-plex polytope. ¤

Although co-k-plex inequalities form facets of Pk(G) for k = 1, 2, they
do not for k ≥ 3. Consider a graph G = (V, ∅) with at least k vertices.
Note that G is a co-k-plex and the corresponding inequality

∑
i∈V xi ≤ rk

is not supporting since ρk(G) = k and there is no x ∈ Pk(G) that satisfies
it at equality. Hence, these inequalities do not form facets of Pk(G) for all
G. This is in contrast to the results known for k = 1, 2. The reason is rk =
k for k = 1, 2 and every graph G with at least k vertices has a k-plex of size
rk = k. The next natural question, if they form facets when G is a co-k-plex
with ρk(G) = rk, k ≥ 3 is also settled in the negative by the following
counterexamples.

Assume that k is even. Construct graphs G of arbitrary order n ≥ rk as
the union of n− rk clique components of size one and two clique components
of size k−1 = rk/2. Then G is a co-k-plex with the two “large” clique compo-
nents forming a k-plex of size rk. Suppose F = {x ∈ Pk(G) :

∑
i∈V xi = rk}

is a facet of Pk(G). Since Pk(G) is an integral polytope, the extreme points of
F are also integral and F is a convex hull of those integral vectors. Consider
one such binary vector xo ∈ F . If xo

i = 1 for some i that is a one-vertex clique
component of G, for xo to be feasible we have

∑
j∈V \N [i] x

o
j ≤ k − 1. But

since V \ N [i] = V \ {i}, we have
∑

i∈V xo
i ≤ k, which contradicts the fact

that xo ∈ F as rk > k. Hence, the components of extreme points of F cor-
responding to one vertex components of G are all zeros. Hence, there exists
exactly one extreme point in Pk(G) that satisfies

∑
i∈V xi ≤ rk at equality

which is the characteristic vector of Kk−1 ∪Kk−1. Thus, F is 0-dimensional
and not a facet.

For odd k, we can have arbitrarily large graphs by adding single vertex
components to the antiweb Gk[V ′] constructed before. By using similar ar-
guments, we can again show that there exists only one point in the k-plex
polytope that satisfies the co-k-plex inequality at equality. From these ob-
servations we can conclude that ρk(G) = rk is only a necessary condition for
co-k-plex inequality to induce a facet of Pk(G). Identifying co-k-plex graphs
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for which the co-k-plex inequalities form facets of the k-plex polytope is
important as these inequalities could be lifted to yield facets for a graph con-
taining such structures. It is also a well-known fact that a graph is perfect if
and only if its clique polytope is completely characterized by all the maximal
independent set inequalities and non-negativity constraints [20]. Similarly,
we could explore k-plex perfectness of graphs whose k-plex polytope can be
completely described by the co-k-plex inequalities described here and non-
negativity constraints. This is an interesting topic for future research.

5 Branch & Cut Framework

This section describes a simple branch-and-cut (BC) implementation incor-
porating the maximal independent set (MIS) cuts for the maximum k-plex
problem. The aim of this part of the paper is to judge the effectiveness of MIS
cuts in solving the problem of interest, the order and size of instances that
can be solved under this simple framework, and to provide some benchmark
instances for this problem. The experiments were conducted for k = 1 and 2.
Even though the case of k = 1 corresponds to the well-researched maximum
clique problem, these results illustrate the difference in the performance of
our approach for two consecutive values of k.

5.1 Implementation Details

Branch-and-cut methods are popular and effective in optimally solving a
wide variety of combinatorial optimization and general integer programming
problems [42,3,6,5,4]. These methods incorporate cutting planes in solving
the linear programming (LP) relaxation at the nodes of a branch-and-bound
tree to get tighter bounds. Although BC methods have been successfully
applied to solve several hard combinatorial optimization problems, tailoring
a BC algorithm to effectively solve a specific problem is a delicate task that
requires attention in itself in terms of extensive experimentation and tuning.
For more information on BC methods and for other useful references, see [37].

In our experiments, the order and edge density of the graphs are var-
ied and the maximum k-plex problem is solved on these graphs using our
implementation of a MIS cuts based BC algorithm. The BC algorithm was
implemented using ILOG CPLEX 9.0r [30] and the MIS cuts were gen-
erated using a greedy algorithm. The greedy algorithm starts by adding an
arbitrary vertex and then removes its neighbors from the graph. Then it
proceeds in a similar fashion by adding the vertex of minimum degree in
the residual graph to the MIS and removing its neighbors until there are no
more vertices to add. The following paragraphs describe the settings used
and other relevant implementation details.

Two types of cuts, local cuts and global cuts were employed to solve the
problem. Global cuts, which are valid at every node of the BC tree, are
generated by finding maximal independent sets in the graph instance us-
ing a greedy algorithm. The greedy algorithm runs from every vertex, MIS
are generated and distinct sets of size greater than k are stored, but never
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more than MaxGlobalCuts cuts are generated which is an externally set
constant. The distinction between adding these as global cuts rather than
constraints in the original system is that, CPLEX applies them only when
they are violated, thereby keeping the size of the system small. Local cuts,
which are valid at the node in which they’re generated and for all its child
nodes, are also generated in a similar fashion and implemented using the
goals feature of CPLEX. They are generated using a constant skip factor of
32 which means local cuts were generated every 32 nodes in the BC tree.
In the case of local cuts however, the vertices corresponding to variables
fixed at zero are deleted before MIS are found, and only variables with high
fractional value (≥ 0.5) are used as starting vertices for finding MIS. The
round of cuts generated (distinct and always fewer than n) using only the
violated MIS inequalities are added to the system and CPLEX re-solves the
problem at that node and handles the cut management from that point on-
wards. It should be noted that CPLEX generates its own classes of cuts to
solve any given MIP. These were turned off and only MIS local and global
cuts were used in the BC algorithm. In addition, the number of rows in the
problem with cuts added is limited to 3 times the original number of rows
by setting the CPLEX parameter CutsFactor to 3. The biggest advantage
of using the framework provided by CPLEX is the effective default settings
that take care of the branching process, node selection, variable selection,
primal heuristics, pre-solving among others, while the bounding is done by
solving the LP relaxation with the user specified cuts.

The implementation described above is simple enough to help us judge the
effectiveness of MIS cuts without intensifying the BC algorithm. Note how-
ever that, several critical issues in designing a sophisticated BC algorithm,
such as using a dynamic global cut pool instead of the fixed size option of-
fered by CPLEX and lifting local cuts so that they are globally valid can be
considered. Even some of the basic settings can be improved such as using
methods other than greedy algorithm to generate MIS cuts, distinguishing
and selecting cuts from the violated cuts based on quality measures (such as
maximum violation or maximum depth which is the Euclidean distance of the
cut from the the point being separated), varying the frequency at which cuts
are added dynamically (so that more cuts are generated and applied where
the violation is “high”) and the size of the cut pool that is applied and its
management. These are directions that need to be carefully considered in the
future in order to develop a more powerful BC algorithm for this problem.

5.2 Computational Test Results

The test bed of instances used in our experiments consists of a set of Erdös
collaboration networks [28,8], clique instances from Second DIMACS chal-
lenge [23,31], and graphs of various order and size generated using Sanchis
generators [44]. In scientific collaboration networks, the vertices represent
scientists, and an edge connects two of them if they co-authored at least one
paper. Erdös collaboration networks considered in [28,8] are centered around
Paul Erdös and include authors who are connected to Erdös through a “path”
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Table 1 Erdös networks: The number of vertices, edges, edge density, and the
maximum k-plex size for k = 1, . . . , 4.

Graph G = (V, E) |V | |E| Edge Density ρk(G) for k = ...
1 2 3 4 5

ERDOS-97-1.NET 472 1314 0.0118212 7 8 9 11 12
ERDOS-98-1.NET 485 1381 0.0117662 7 8 9 11 12
ERDOS-99-1.NET 492 1417 0.0117315 7 8 9 11 12
ERDOS-97-2.NET 5488 8972 0.0005959 7 8 9 11 12
ERDOS-98-2.NET 5822 9505 0.0005609 7 8 9 11 12
ERDOS-99-2.NET 6100 9939 0.0005343 8 8 9 11 12

of collaborators. We used the following Erdös collaboration networks avail-
able from [8] in our experiments: ERDOS−x − y.NET, where x represents
the last two digits of the year for which the network was constructed, and
y represents the largest Erdös number of a scientist represented by a vertex
in the graph, i.e., the largest distance between Erdös vertex and any other
vertex in the graph. For example, the vertices in graph ERDOS-99-2 corre-
spond to 6100 authors who co-authored a paper either with Erdös or with
at least one of his co-authors. We considered such networks for years 1997-
1999 and y = 1 and 2. We will refer to ERDOS−x − y.NET graph as the
y-neighborhood Erdös network for year x. Note that in the instances we used
the vertex corresponding to Erdös himself is excluded.

It should be noted that in experiments with Erdös networks our goal was
to solve the maximum k-plex problem to optimality on large-scale, real-life
social network instances. On the other hand, in the set of experiments with
DIMACS and Sanchis graphs our intention was to get a sense of the influence
of order and density of graphs on the BC algorithm and the effectiveness
of MIS cuts. The Sanchis generator available at [23] produces graphs with
known maximum clique size with a specified number of vertices, edges and a
construction parameter, r. In our experiments, the maximum clique size was
fixed at dn

3 e and the construction parameter r which has to be an integer
from interval [0, n

ω(G) ) was set at 1.
The basic settings for the experiments were as follows. The maximum k-

plex problem was solved using the CPLEX BC implementation on a 3.06 Ghz
Pentiumr-4 computer for k = 1, 2. In experiments with Erdös networks, the
following CPLEX settings were used: The MaxGlobalCuts parameter was
set to 9; no more than 3 local cuts were added every 32 nodes of the branch-
and-cut tree; only variables with fractional value ≥ 0.75 were used as starting
vertices for finding MIS for local cuts.

Table 1 summarizes the input information and the maximum k-plex size
for the Erdös networks analyzed, while Table 2 shows the run time of the
BC algorithm on 1-neighborhood Erdös networks (ERDOS-x-1.NET, x =
97, 98, 99) for different values of k. Real-life social networks tend to be large
but sparse, as illustrated by the analyzed instances. The large number of
vertices of a small degree allows us to significantly reduce the graph size by
recursively applying the following procedure similar to “peeling” proposed
in [1] for the maximum clique problem. Suppose that we know that ρk(G) ≥ ρ
for some lower bound ρ. Then any i ∈ V such that degG(i) < ρ − k cannot
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Table 2 The run time (in CPU seconds) of the BC algorithm on 1-neighborhood
Erdös networks.

ERDOS-97-1 ERDOS-98-1 ERDOS-99-1
1 196.246 216.433 235.121
2 242.454 294.349 327.407
3 252.445 262.061 309.323
4 154.000 172.177 191.003
5 164.063 188.906 193.905

Table 3 The reduced graph sizes and run time (in seconds) for the BC algorithm
on reduced graphs.

ERDOS-97-2 ERDOS-98-2 ERDOS-99-2
k |V ′| |E′| Time |V ′| |E′| Time |V ′| |E′| Time
1 174 1061 8.203 188 1160 11.766 194 1208 12.234
2 174 1061 25.561 188 1160 29.28 194 1208 40.468
3 174 1061 45.999 188 1160 38.781 194 1208 38.874
4 77 510 2.453 105 686 4.562 116 763 10.624
5 77 510 3.063 105 686 4.047 116 763 6.297

belong to a maximum k-plex, therefore i can be deleted from G without
changing its k-plex number. The size of reduced graph G′ = (V ′, E′) resulting
from recursively applying the peeling procedure is shown in Table 3, which
also contains the run time of BC algorithm applied to the reduced graph.
Note that this procedure was only applied to 2-neighborhood Erdös networks,
which were too large to be solved directly. The solutions obtained for the
corresponding 1-neighborhood Erdös network was used as the lower bound
in the peeling procedure for a 2-neighborhood Erdös network, i.e., ρk(G)
of ERDOS-x-1.NET was used as the lower bound for ρk(G) of ERDOS-x-
2.NET.

The results of our experiments with Sanchis graphs are presented in Ta-
bles 4 and 5. The number of vertices in the generated Sanchis graphs was
varied from 60 to 1000 and the edge density(d) was varied from 0.4 to 0.9.
The number of edges was calculated as bdn(n−1)

2 c, where bac is the largest
integer less than or equal to a. The MaxGlobalCuts parameter in CPLEX
was set at 200 for these experiments. In order to ensure a graceful termina-
tion of CPLEX, upper limits were set on runtime (8hrs) and working memory
(2GB) when the instance cannot be solved optimally within these limits. It
should also be noted that the memory limit was never reached as CPLEX
node file option was used whereby the tree is compressed and written to disk
without significant increase in runtime [30]. † and ‡ indicate non-optimal ter-
mination with gap greater than 5% and less than 5%, respectively. We were
able to solve maximum 1-plex to optimality on graphs of order up to 1000
and density up to 0.7 except for the instance with 900 vertices and density
0.7 which terminated with a gap of 2.33%. On graphs of density 0.8, we were
able to optimally solve up to 600 vertices and the 800 vertex instance. While
the 700 vertex instance terminated with a gap of 0.855%, the 900 and 1000
vertex instances terminated with a gap 8.33% and 10.78% respectively. On
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instances with density 0.9, optimal solution was obtained for graphs with up
to 500 vertices. The instances with order 600, 700, 800, 900 and 1000 had ter-
mination gaps of 8%, 11.97%, 13.11%, 17% and 17.96%, respectively. Recall
that ρ1(G) = ω(G) = dn

3 e for these instances. In Table 4, the best clique size
found is indicated in parentheses whenever we failed to solve the instance to
optimality. Observe that whenever the upper limit on time was reached with
a termination gap of more than 5% on a particular order and density graph,
it also happened with graphs of higher order of that density. Based on this,
whenever we observed CPLEX reach the upper time limit for a particular
order and density with a termination gap of more than 5%, the runs for that
density in higher order graphs were not conducted for the maximum 2-plex
problem (marked by “-” in Table 5).

We were able to solve the maximum 2-plex problem to optimality on
graphs of order up to 1000 on density 0.4 and 0.5, and up to order 600 on
density 0.6. Instances of density 0.6 and order 700, 800 and 900 terminated
with a gap of 5.13%, 8.61% and 13% respectively. Graphs of density 0.7 were
solved to optimality up to order 500, while 600 and 700 vertex instances
terminated with a gap of 1.5% and 7.27% respectively. Graphs of density
0.8 were solved up to order 250 optimally with 300 and 350 vertex instances
terminating at 3% and 5.13% gaps respectively. With density at 0.9, we were
able to solve only two small instances (60 and 80 vertices) optimally. Instances
with 100, 120 and 140 vertices terminated with gaps of 18.42%, 23.36% and
29.17% respectively. Table 5 presents the runtime and Table 6 presents the
2-plex number (or best integer solution) found for each instance.

Ability to solve maximum 2-plex drastically reduced and the instances
solved optimally required much higher running times as compared to maxi-
mum 1-plex. In a head-to-head comparison, 24 instances on which maximum
1-plex was optimally solved for, maximum 2-plex was not. Besides the obvi-
ous reason that the set of feasible solutions is larger for the maximum 2-plex
problem, there is presently no other explanation for this behavior.

Given the intractability of the problems solved, these results are quite
encouraging and indicate that the MIS cuts can be used effectively to solve
this problem. Development of a more poverful MIS-integrated BC algorithm
is a direction that needs further exploration in order to be able solve large-
scale instances. Even for the instances presently solved optimally, the running
times can certainly be improved by fine tuning, or even integrating other cuts
in the BC algorithm and by using more powerful computational resources.
But the improvement may be limited as the problem is basically intractable.
However, these numerical results should indicate where we can expect com-
putational difficulties while solving these problems.

Using the same experimental set up as on the Sanchis test-bed, we solved
the maximum 2-plex problem on selected DIMACS clique instances [23].
However, the upper limit on runtime was increased to 24hrs and MaxGlob-
alCuts parameter was reduced to 50 for these runs. Table 7 presents the
outcome of this experiment. Columns G, n, m, d and ω(G) provide the DI-
MACS graph name, number of vertices, number of edges, edge density and
clique number, respectively. Columns BIS, UB and Time provide the best
integer solution found by the BC algorithm, the best computed upper bound



Clique Relaxations in Social Network Analysis 19

Table 4 Runtime in seconds for solving maximum 1-plex problem on Sanchis
graphs of different order (n) and density (d). Best solution found for non-optimally
terminated instances are shown in parentheses, all of them actually correspond to
the optimal solution.

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

60 0.515 0.14 0.109 0.094 0.171 0.125
80 0.953 0.281 0.188 0.328 0.344 0.625
100 1.656 1.015 0.374 0.718 0.313 0.61
120 4.11 1.781 1.515 1.5 1.046 1.875
140 6.782 2.734 1.891 1.75 1.469 2.032
160 9.391 4.094 2.843 2.375 1.954 5.266
180 14.625 6.562 4.843 3.765 2.735 3.766
200 26.312 11.234 6.703 4.89 4.938 6.907
250 53.609 27.672 15.375 12.563 8.89 29.328
300 130.311 49.828 36.844 49.218 31.578 58.094
350 167.64 69.874 80.093 95.046 91.89 311.734
400 305.576 146.405 123.953 145.296 298.891 3164.52
500 587.809 332.216 827.541 2640.28 2302.89 18802.8
600 1440.16 666.262 1265.4 2445.75 6324.92 28801†

(200)
700 2084.06 1313.13 3128.04 1163.8 28801.1‡ 28801.1†

(234) (234)
800 4188.82 2407.17 5537.67 9497.54 28202.3 28801.1†

(267)
900 7484.71 7293.83 3138.48 28803‡ 28802.5† 28801†

(300) (300) (300)
1000 10609.8 12619.5 5454.63 14436.1 28803.1† 28800.9†

(334) (334)

Table 5 Runtime in seconds for solving maximum 2-plex problem on Sanchis
graphs of different order (n) and density (d).

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

60 0.781 0.438 1.031 4.592 125.295 141.635
80 1.422 1.14 1.515 5.592 182.749 28298
100 3.108 2.172 2.329 6.89 249.187 28801†

120 6.375 3.687 4.422 10.687 815.7 28801.1†

140 9.812 6 10 37.938 1775.66 28801†

160 16.265 9.828 21.156 45.843 1623.88 -
180 26.093 22.406 29.14 50.234 8458.37 -
200 28.453 29.953 57.281 152.749 1687.75 -
250 66.984 59.219 131.311 709.823 14062.5 -
300 131.39 138.921 314.373 1204.26 28802.5‡ -
350 255.012 174.875 638.072 2400.58 28803† -
400 321.754 483.749 1085.99 3957.04 - -
500 1493.74 1130.23 3728.15 15078.9 - -
600 2594.98 2802.97 7990.93 28820.9‡ - -
700 2451.03 4929.64 28865.5† 28801.9† - -
800 4571.52 6961.75 28901† - - -
900 5643.9 17661.6 28941.7† - - -
1000 15307.2 22162.1 - - - -
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Table 6 2-plex numbers of Sanchis graphs of different order (n) and density (d).

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

60 20 20 20 20 21 28
80 27 27 27 27 27 33
100 34 34 34 34 34 ≥ 38
120 40 40 40 40 40 ≥ 43
140 47 47 47 47 47 ≥ 48
160 54 54 54 54 54 -
180 60 60 60 60 60 -
200 67 67 67 67 67 -
250 84 84 84 84 84 -
300 100 100 100 100 ≥ 100 -
350 117 117 117 117 ≥ 117 -
400 134 134 134 134 - -
500 167 167 167 167 - -
600 200 200 200 ≥ 200 - -
700 234 234 ≥ 234 ≥ 234 - -
800 267 267 ≥ 267 - - -
900 300 300 ≥ 300 - - -
1000 334 334 - - - -

on the optimum and running time in seconds respectively. The experiments
were also repeated for k = 1, results of which are presented in the next
section, where we specifically consider the maximum clique problem.

Table 7 Maximum-2-plex problem on DIMACS graphs.

Graph details
G n m d ω(G) BIS UB Time

c-fat200-1 200 1534 0.077 12 12 12 57.285
c-fat200-2 200 3235 0.163 24 24 24 46.861
c-fat200-5 200 8473 0.426 58 58 58 40.235
hamming6-2 64 1824 0.905 32 32 32 0.469
hamming6-4 64 704 0.349 4 6 6 4.391
hamming8-2 256 31616 0.969 128 128 130.395 86402.2
hamming8-4 256 20864 0.639 16 16 46.694 86401.6
johnson8-2-4 28 210 0.556 4 5 5 3.611
johnson8-4-4 70 1855 0.768 14 14 14 7423.78
johnson16-2-4 120 5460 0.765 8 10 14.963 86400.8
keller4 171 9435 0.649 11 15 26.8387 86401.7
MANN a9 45 918 0.927 16 26 26 2.344
san200 0.7 2 200 13930 0.7 18 26 32.1343 86400.8
san200 0.9 3 200 17910 0.9 44 50 79.9747 86405.5
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5.3 On Maximum Clique Problem

Consider the following 0,1-formulation of the maximum clique problem on
G = (V, E). Let d̄i = |V \N [i]| as before.

ω(G) = max
∑

i∈V

xi (9)

subject to: ∑

j∈V \N [i]

xj ≤ d̄i(1− xi) ∀ i ∈ V (10)

xi ∈ {0, 1} ∀ i ∈ V (11)

This formulation is a special case of the maximum-k-plex formulation (2) - (4)
presented before when k = 1 as ρ1(G) = ω(G). Constraint (10) ensures that
no non-neighbor of a vertex is included in the clique for every vertex in the
clique and becomes redundant for others. We will refer to the formulation (9) -
(11) of the maximum clique problem as the 1-plex formulation.

This case was excluded in the previous polyhedral study for the following
reason. Unlike the maximum-k-plex problem for 1 < k < n, xi ≤ 1 is not
always a facet for the maximum clique problem. It induces a facet if and
only if V = N [i]. Since when the condition is satisfied, there exist n affinely
independent vectors ei and ei + ej for all j ∈ N(i) = V \ {i}, that lie on the
face defined by xi ≤ 1, and when the condition is not satisfied, there exists
a j ∈ V \N [i] such that xi + xj ≤ 1 is valid for the clique polytope. In other
words xi ≤ 1 is a facet if and only if {i} is a maximal independent set. This
is just a special case of a classical result presented in [41].

Another interesting observation is that, to the best of our knowledge, this
is the most compact integer programming formulation of the maximum clique
problem with exactly n variables and n constraints. The classical (comple-
ment) edge formulation (12) - (14), has n variables and |Ē| constraints which
could be O(n2) in the worst case.

ω(G) = max
∑

i∈V

xi (12)

subject to:
xi + xj ≤ 1 ∀ (i, j) ∈ Ē (13)

xi ∈ {0, 1} ∀ i ∈ V (14)

The other well known MIS formulation using maximal independent sets,
where constraint (13) is replaced by (15) has n variables and O(3n) con-
straints in the worst case [39].

∑

i∈I

xi ≤ 1 for each MIS, I in G (15)

However the compactness of the 1-plex formulation comes at a price which
we will make clear now. The edge formulation is closely related to the 1-plex
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formulation in the following sense. Note that constraint (13) can be rewritten
as

xi + xj ≤ 1 ∀ i ∈ V, j ∈ V \N [i], (16)

which amounts to repeating constraints in the edge formulation. Now it is
easy to see that constraint (10) in the 1-plex formulation can be obtained by
summing constraint (16) over all j ∈ V \N [i], for each i ∈ V , which results
in n constraints. Let C(G) denote the feasible binary vectors of either formu-
lation (characteristic vectors of cliques in G), P (G) denote the LP relaxation
polytope of the edge formulation and let R(G) denote the LP relaxation poly-
tope of the 1-plex formulation. Then we have, conv(C(G)) ⊆ P (G) ⊆ R(G)
since R(G) is defined by a surrogate system [27] of P (G). Thus, we solve a
poorer relaxation in the nodes of the BC tree when we use the 1-plex for-
mulation to solve the maximum clique problem. However, the run times for
1-plex formulation were on many instances better than for the edge formu-
lation, as demonstrated by the results in Table 8. This suggests that further
investigation into the 1-plex formulation for the maximum clique problem
could provide interesting new insights into this well researched problem.

Table 8 Maximum clique problem on DIMACS graphs.

Graph details Time for Time for
G n m d ω(G) 1-plex form edge form.

c-fat200-1 200 1534 0.077 12 17.969 50.562
c-fat200-2 200 3235 0.163 24 30.157 67.344
c-fat200-5 200 8473 0.426 58 15.797 31.687
hamming6-2 64 1824 0.905 32 0.015 0.016
hamming6-4 64 704 0.349 4 0.265 0.485
hamming8-2 256 31616 0.969 128 0.031 0.031
hamming8-4 256 20864 0.639 16 2089.69 1046.06
johnson8-2-4 28 210 0.556 4 0.031 0.016
johnson8-4-4 70 1855 0.768 14 0.781 0.031
johnson16-2-4 120 5460 0.765 8 0.297 0.047
keller4 171 9435 0.649 11 315.574 80.969
MANN a9 45 918 0.927 16 0.203 0.032
san200 0.7 2 200 13930 0.7 18 23.531 25.641
san200 0.9 3 200 17910 0.9 44 4725.49 23.922

6 Conclusion and Future work

This paper studies the maximum k-plex problem which is a graph-theoretic
relaxation of the maximum clique problem introduced by [47] in the context
of social networks. Some important properties of a k-plex are reviewed and a
detailed introduction to clique relaxation models in social network analysis is
presented. We prove complexity results establishing the intractability of this
problem for every constant k. The problem is formulated as a binary inte-
ger program and basic polyhedral results are presented. In addition, classes



Clique Relaxations in Social Network Analysis 23

of valid inequalities are developed for the problem, one of which is imple-
mented in a basic branch-and-cut framework. Results of our computational
experiments are presented which indicate the effectiveness of the cuts used.
Further, the formulation developed is studied in the context of the maximum
clique problem for which this work has led to a new compact formulation.

Several research problems and directions have been identified through the
course of the paper that need attention. To summarize, facets of the k-plex
polytope need to be discovered, the branch-and-cut algorithm needs to be
modified and tuned to be able to solve larger instances to optimality and
finally the new formulation for the maximum clique problem needs to be
explored further. Development of meta-heuristics capable of solving massive
instances in a reasonable amount of time would be of great practical value.
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