Extensibility in PETSc http://www.mcs.anl.gov/petsc

Matthew G. Knepley Jed Brown é
Computation Institute, University of Chicago Argonne National Lab & University of Colorado Boulder ArgOn ne

knepley@Qgmail.com jed@jedbrown.org LABORATORY

We acknowledge support from the Department of Energy Office of Advanced Scientific Computing.

PETSc

Plugin Architecture Major New Capabilities

PETSc is a set of libraries for the efficient, scalable, solution of systems of nonlinear Since PETSc can change implementation on the fly, using the Delegator pattern, e Advanced time stepping

algebraic equations, and an extensible platform for scientific computing. new class implementations can be provided at runtime by the user. The user creates a

e Modular: Functionality is cleanly separated into interacting interfaces dynamic library, say 1ibmysnes.so With a registration function that PETSc calls on load (

» Scalable: Code runs efficiently on 1—1,000,000+ cores PetscDLLibraryRegister_mynes). This function registers a constructor for the new class, and e Unstructured mesh managment

« Extensible: Users can easily add functionality to solve their problems thg constructor. sets up thg wrtgal table of fgnctlons which dllrect mterfacg calls down the
to implementation. Below is an implementation of a new nonlinear solver library:

e Nonlinear preconditioning

e Scalable communication infrastructure

#define MYSNES "mysnes" static PetscBool MySNESPackagelnitialized = PETSC_FALSE;
Clean HierarChy of Interfaces ypedel struct (- PatscErtorGods MSNESFinalizePeckaga (vold) Library Behavior
 SNESTVERES itialized = PETSC_FALSE:
For each PETSc class, there is a toplevel interface, using only other toplevel interfaces, e U SR SR e PETSc endeavors to make the library consistent across architectures, environments, and

static PetscErrorCode SNESSolve MySNES(SNES snes)

and internally we only us these interface when employing other classes. { PelscErrorCode YSNESInitializePackage (volo) builds. It has a consistent Application Binary Interface (ABI) across different builds, for

SNES MySNES xmy = (SNES MySNES %) snes—>data; {
PetscErrorCode ierr;

/+x U I x/ . . .
retursnerO?O - if (MySNESPackagelnitialized) return O0; example debugglng and Optlmlzed'
} MySNESPackagelnitialized = PETSC_TRUE;
ierr = SNESRegister (SNESSHELL, SNESCreate MySNES) ;CHKERRQ(ierr);
PetscErrorCode SNESCreate_ MySNES(SNES snes) ierr = PetscRegisterFinalize (MySNESFinalizePackage) ;CHKERRQ(ierr);
{ return 0; . . y . .
NESMNES) We try to avoid Bill Gropp’s List of Component Mistakes:

PetscErrorCode PetscDLLibraryRegister_mynes(void)

T omer viable. snirics here ! petsctrrorcods ierr e Namespace pollution and monolithic library structure
e Printing error messages or exiting

e Requiring interactive input or main()

e Requiring running on all processes

ierr = PetscNewLog(snes, &my) ;CHKERRQ(ierr);
snes—data = (voidx) my; ierr = SNESInitializePackage ();CHKERRQ(ierr);
return O; return O;

} }

Why Use Plugins?

PETSc dispatches to an implementation class from the toplevel interface, e Inversion of Dependencies

PetscErrorCode MatMult(Mat mat,Vec x,Vec y) {

PetscErrorGode ferr The MatSchur matrix implementation uses a KSP object internally, so it cannot sit in a matrix library, but it does not belong in the solver library. We e | ack of portablllty, ’[eS’[ing, documentation, examples
ii;rr(!Ta:;;oaﬁizzglﬂiznjﬁgli?fg(Pxetssg).téjl_el;ég;rg?i(éIrDre)t.scObject) mat), PETSC ERR SUP, "This matrix type does not have a multiply defined"); can pUt |t Tal a th|rd |ibrary that uses the SOlver |ibrary dynamica”y_

s o) | e Ignorance of standards

allowing us to switch storage formats on the fly, or in the case of solvers to e Extensibility without recompilation or reinstallation

change algorithms. We can seamlessly manage external hardware and storage, » Static compilation does not provide a performance boost Configure Extensibility

PETSc Configure can be extended with user modules at runtime. The tests for many
packages are now contributed, and work automatically when dropped in the moduels

PetscErrorCode VecAXPY_SeqCUSP(Vec yin, PetscScalar alpha, Vec xin) {
CUSPARRAY xxarray , xyarray;
PetscErrorCode ierr;

PETSc objects can be configured at runtime with Options Database, the Service Locator

ierr = VecCUSPGetArrayRead(xin, &xarray);CHKERRQ(ierr);

SR S TR pattern. For example, an optimized solver for the 2D Allen-Cahn problem (SNES ex55) @ directory.
! éé‘lgélg;g:]?z;{géj&{)l\(ﬂj\/;_saﬁ PETSC(JI_eE;rR)_,LIB, "CUSP error: %s", ex); Can be COnStrUCted entirely from Options:

) Advantages of our system over others, such as Autoconf and SCons:

ierr = VecCUSPRestoreArrayRead (xin, &xarray);CHKERRQ(ierr);

ierr = VecCUSPRestoreArrayReadWrite (yin, &yarray);CHKERRQ(ierr);
return 0; : : C L " .
} Run flexible GMRES with 5 levels of multigrid as the preconditioner 1. Namespacmg :
./exbb -ksp_type fgmres -pc_type mg -pc_mg_levels 5 -da_grid_x 65 -da_grid_y 65
Why Use Dynamic Dispatch? Use the Galerkin process to compute the coarse grid operators Tests are wrapped up in modules, which also hold the test results. Thus you get the normal Python namespacing of results. As simple as this sounds,

pe_ng_galerkin SCons does not do it, nor CMake, nor Autoconf. They all use one flat namespace. Also, when we build up command lines, you can see where options
e Runtime customization of |mp|ementat|on Use SVD as the coarse grid saddle point solver came from, whereas in the others, all flags are dumped into reservoirs like INCLUDE and LIBS.

-mg_coarse _ksp_type preonly -mg_coarse_pc_type svd
® Sma”, abstract interface Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit . .
. NO ru nti me type CheCkS for CUStOmiZation -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag 2- EXplICIt CO ntrOI fIOW

Schur complement solver: GMRES (5 iterates) with no preconditioner , o o
e Lovelo.tioldepLis 1 keptrpe gares g levelsfioldsplit. i petype nono -mg Lovels.fieldepiis kep mar it & The modules are organized explicitly in a DAG. The user indicates dependence with a single call, requires(’path.to.other.test’), Which not only structures the

e Single breakpoint for debugging

-mg_levels_fieldsplit_O_ksp_type preonly -mg_levels_fieldsplit_O_pc_type sor -mg_levels_fieldsplit_O_pc_sor_forward

Why Not Use Templates? Why Use Options? 3. Multi-languages tests
e Lack of encapsulation (above and below template library interfaces)

e Crowds namespace and interfaces with instantiated names

We have explicit pushing and popping of languages, so builds can use any one they want, all with their own compilers, flags, libraries, etc. Thus its
easy for us to do cross-language checks in a few lines, whereas this is very difficult in other systems.

e Code without configuration is simpler and more maintainable
e Configuration of deep hierarchies of objects

o : :
Template eXpanSIOn COde nOt avallable tO the user Sovler configurations, such as the one shown on the left, can be deeply nested, and changed in response to problem conditions. Maintaining 4 SubpaCkageS
optimality across problem configurations requires large changes to the solver. Destruction and recreation of objects with different types, as you '

e Compile time and error message explosion . . . S 10 he .
P J P would have with templates, is not feasible for these large collections of interrelated objects. We have a template package (and a GNU specialization) so that PETSc downloads, builds, and tests it for inclusion. In some cases now, people use
e Convoluted instantiation and resolution |QgiC packages through PETSc because it will get it and build it automatically. Most other systems have no idea of hierarchy.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex55.c.html

