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Complementary Work
FMM Work

@ Queue-based hybrid execution
o OpenMP for multicore processors

o CUDA for GPUs

@ Adaptive hybrid Treecode-FMM
e Treecode competitive only for very low accuracy

e Very high flop rates for treecode M2P operation

@ Computation/Communication Overlap FMM
e Provably scalable formulation

o Overlap P2P with M2L
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Complementary Work
Other Work

@ Classical DFT in Biology
o Excellent speedup over CPU

@ Enabled 3D simulations of calcium ion channels

@ PetRBF: radial basis functions on the GPU
@ 10-20x speedup over CPU

o Combined with PetFMM for full vortex fluid method code

@ FEM: Autogenerated optimized kernels

o Autogenerate code for hundreds of elements, and generic weak
forms using FEniCS

@ Achieve 20% of peak for 3D P; elements (10x over CPU)
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
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Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement
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Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques
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http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
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Short Introduction to FMM
Spatial Decomposition

Pairs of boxes are divided into near and far:
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Short Introduction to FMM

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.
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Short Introduction to FMM

Functional Decomposition

Upward Sweep 5 Downward Sweep i
'

(.. (}&O) Create Multipole Expansions Evaluate Local Expansions. (..
SNV
—> P2M —> M2M ----> M2L ----> L2L ----> L2P
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Parallelism
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e Parallelism
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Parallelism
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
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FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List
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Parallelism

FMM Control Flow

Upward Sweep 5 Downward Sweep i
' '

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions. i
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.
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Parallelism

FMM Control Flow

Parallel Operation

<«——»  M2M and L2L translations <«---p MLtransformation e Local domain

Root tree

Level k

Sub-tree 1 Sub-tree 2 Sub-tree 3 Sub-tree 4 Sub-tree 5 Sub-tree 6 Sub-tree 7 Sub-tree 8

Kernel operations will map to GPU tasks.
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Parallelism
Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description
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Parallelism

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis
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http://www.cs.umn.edu/parmetis

Parallelism

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition
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http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

Parallelism

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice
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Parallelism

Parallel Tree Implementation

Advantages

e Simplicity
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Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse
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Parallelism

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability
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Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
M. Knepley (UC) SC Gydr 10 21/38
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Parallelism
Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees
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Parallelism

PetFMM Load Balance

0.8

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256
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(b) 4 cores
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What Changes on a GPU?

Outline

e What Changes on a GPU?
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What Changes on a GPU?

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

@ Up to 85% of time in FMM

e Tradeoff with direct
interaction

@ Dense matrix multiplication
e 2p® rows
@ Each interaction list box
o (69 —39)2d
ed=2L=28
e 1,769,472 matvecs
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What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
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What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!
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What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals
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Version 1
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GPU M2L

Version 1
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What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
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What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep
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What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!
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What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = —1' <’ er/) i1 )

Additional problems: Not enough parallelism for data movement
@ Move 27 LE to global memory per TB
@ 27 x 2p = 648 floats
@ With 32 threads, takes 21 memory transactions
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What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product

M2L =
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What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
o qi T+ it
m2l; = —1 < ) )t (3)

@ Each thread does a dot product

@ Cannot use diagonal traversal, more work —r i
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What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

M2L =
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What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

@ Loop unrolling

M2L =
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What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-'  Downward Sweep
Loop unrolling
No thread synchronization

300 GFlops
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What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-'  Downward Sweep
Loop unrolling
No thread synchronization

Examine memory access

300 GFlops
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What Changes on a GPU?

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU | GPU
Bus Width (bits) 64 | 512

Bus Clock Speed (MHz) 400 | 1600
Memory Bandwidth (GB/s) 3] 102
Latency (cycles) 240 | 600

Tesla always accesses blocks of 64 or 128 bytes
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What Changes on a GPU?

GPU M2L

Version 3

Coalesce and Overlap memaory accesses
Coalescing is
@ a group of 16 threads
@ accessing consective addresses
@ 4,8, or 16 bytes
@ in the same block of memory
e 32, 64, or 128 bytes
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What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Memory accesses can be overlapped with
computation when

@ a TBis waiting for data from main memory
@ another TB can be scheduled on the SM

@ 512 TB can be active at once on Tesla

M. Knepley (UC) SC

Gyo6r '10
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What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

@ MULT and FMA must execute simultaneously

480 GFlops
@ 346 GOps
25x Speedup of
@ Without this, peak can be closer to 600 GF Dovenwarg
Sweep
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What Changes on a GPU?
Design Principles

M2L required all of these optimization steps:
@ Many threads per kernel

@ Avoid branching
@ Unroll loops
@ Coalesce memory accesses

@ Overlap main memory access with computation
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PetFMM
Outline

© PetFMmM
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PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation
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http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

PetFMM

PetFMM CPU Performance

Strong Scaling

256

128

Speedup

./ uniform 4ML8R5 —&—
s uniform 10ML9R5 —e—

2 ¥ spiral IMLBR5 —>»— |
spiral w/ space-filling IML8R5 —&—
1 ) ) Perfect Speedup - - - - -
2 4 8 16 32 64 128 256
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PetFMM

PetFMM CPU Performance

Strong Scaling

Evaluation —+—

10° ; ; ;
ME Initialization —»—
\E Upward Sweep —%—
\:Q Downward Sweep —o—

Load balancing stage —e—

10 :’i( Total time —8—
\\
@ N \
E T~ -
= 10° —
\ \
101 3
/ \s
10 ‘2 4 8 16 32 64 128 256
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Largest Calculation With Development Code

@ 10,648 randomly oriented lysozyme molecules
@ 102,486 boundary elements/molecule

@ More than 1 billion unknowns

@ 1 minute on 512 GPUs
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How Will Algorithms Change?

o Massive concurrency is necessary

o Mix of vector and thread paradigms
o Demands new analysis

o More attention to memory management

» Blocks will only get larger
o Determinant of performance

o Urgent need for reduction in complexity
o Complete serial code reuse
o Modeling integral to optimization

M. Knepley (UC) SC Gyér'10  38/38



	Complementary Work
	Short Introduction to FMM
	Parallelism
	What Changes on a GPU?
	PetFMM

