Parallel FMM

Matthew Knepley

Computation Institute
University of Chicago

Department of Mathematics and Computer Sciences
Széchenyi Istvan University, Gyor, Hungary
October 1, 2010

/7N RUSH UNIVERSITY
\l/ MEDICAL CENTER

M. Knepley (UC) SC Gyér’'10 1/38



Using estimates and proofs,

Gy6r '10 2/38



Using estimates and proofs,

a simple software architecture,




Using estimates and proofs,

a simple software architecture,
gets good scaling, efficiency,
and adaptive load balance.

Gy6r '10 2/38



Collaborators

The PetFMM team:

@ Prof. Lorena Barba
o Dept. of Mechanical Engineering, Boston University

@ Dr. Felipe Cruz, developer of GPU extension
o Nagasaki Advanced Computing Center, Nagasaki University

@ Dr. Rio Yokota, developer of 3D extension
o Dept. of Mechanical Engineering, Boston University

M. Knepley (UC) SC Gyér'10  3/38


http://bitbucket.org/petfmm/petfmm-dev
http://barbagroup.bu.edu/Barba_group/Home.html
http://www.bu.edu/pasi/courses/gpu-computing-and-programming/
http://www.maths.bris.ac.uk/~maxry/

Collaborators

Chicago Automated Scientific Computing Group:

@ Prof. Ridgway Scott

o Dept. of Computer Science, University of Chicago
o Dept. of Mathematics, University of Chicago

@ Peter Brune, (biological DFT)
o Dept. of Computer Science, University of Chicago

@ Dr. Andy Terrel, (Rheagen)
o Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) SC Gyér'10  4/38


http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Complementary Work

Outline

° Complementary Work

M. Knepley (UC) SC Gyér'10  5/38



Complementary Work
FMM Work

@ Queue-based hybrid execution
o OpenMP for multicore processors

o CUDA for GPUs

@ Adaptive hybrid Treecode-FMM
e Treecode competitive only for very low accuracy

e Very high flop rates for treecode M2P operation

@ Computation/Communication Overlap FMM
e Provably scalable formulation

o Overlap P2P with M2L

M. Knepley (UC) SC Gyér'10  6/38



Complementary Work
Other Work

@ Classical DFT in Biology
o Excellent speedup over CPU

@ Enabled 3D simulations of calcium ion channels

@ PetRBF: radial basis functions on the GPU
@ 10-20x speedup over CPU

o Combined with PetFMM for full vortex fluid method code

@ FEM: Autogenerated optimized kernels

o Autogenerate code for hundreds of elements, and generic weak
forms using FEniCS

@ Achieve 20% of peak for 3D P; elements (10x over CPU)

M. Knepley (UC) SC Gyér'10  7/38



Short Introduction to FMM
Outline

9 Short Introduction to FMM

M. Knepley (UC) SC Gyér'10  8/38



Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity

M. Knepley (UC) SC Gyér'10  9/38



Short Introduction to FMM
FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement

M. Knepley (UC) SC Gyér'10  9/38



Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x) =D K(xi,x)q(x) (1)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) SC Gyér'10  10/38


http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) SC Gyér'10  10/38


http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

Short Introduction to FMM
Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) SC Gyér'10  11/38



Short Introduction to FMM

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.

M. Knepley (UC) SC Gyér'10  11/38



Short Introduction to FMM

Functional Decomposition

Upward Sweep 5 Downward Sweep i
'

(.. (}&O) Create Multipole Expansions Evaluate Local Expansions. (..
SNV
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

M. Knepley (UC) SC Gyor 10

12/38



Parallelism

Outline

e Parallelism

M. Knepley (UC) SC Gyér'10  13/38



Parallelism
FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations

M. Knepley (UC) SC Gyér'10  14/38



Parallelism
FMM in Sieve

o | o | o | o | | o @ The Quadtree is a Sieve

| o o | e | | -| e with optimized operations

o | | e | o @ Multipoles are stored in sections
| o | | | |

o | | | |

|| e e {

o | | o e | o

o o | o |

M. Knepley (UC) SC Gyér'10  14/38



FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations

@ Multipoles are stored in sections
@ Two Overlaps are defined

SC Gy6r '10 14 /38



FMM in Sieve

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined
o

M. Knepley (UC) SC Gyér'10  14/38



FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

SC Gy6r '10 14 /38



FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for
o Neighbors

SC Gy6r '10 14 /38



FMM in Sieve

M. Knepley (UC)

@ The Quadtiree is a Sieve
o with optimized operations
@ Multipoles are stored in sections

@ Two Overlaps are defined

@ Completion moves data for

o Neighbors
@ Interaction List

SC Gy6r '10 14 /38



Parallelism

FMM Control Flow

Upward Sweep 5 Downward Sweep i
' '

<.. {}x{\> Create Multipole Expansions Evaluate Local Expansions. i
—> P2M —> M2M ----> M2L ----> L2L ----> L2P

Kernel operations will map to GPU tasks.

M. Knepley (UC) SC Gyér'10  15/38



Parallelism

FMM Control Flow

Parallel Operation

<«——»  M2M and L2L translations <«---p MLtransformation e Local domain

Root tree

Level k

Sub-tree 1 Sub-tree 2 Sub-tree 3 Sub-tree 4 Sub-tree 5 Sub-tree 6 Sub-tree 7 Sub-tree 8

Kernel operations will map to GPU tasks.

M. Knepley (UC) SC Gyér'10  15/38



Parallelism
Parallel Tree Implementation

@ Divide tree into a root and local trees
@ Distribute local trees among processes

@ Provide communication pattern for local sections (overlap)
e Both neighbor and interaction list overlaps

o Sieve generates MPI from high level description

M. Knepley (UC) SC Gyér'10  16/38



Parallelism

Parallel Tree Implementation

How should we distribute trees?

@ Multiple local trees per process allows good load balance
@ Partition weighted graph

@ Minimize load imbalance and communication

o Computation estimate:

Leaf Nijp (P2M) + nip? (M2L) + N;p (L2P) + 39N? (P2P)
Interior ngp? (M2M) + mp? (M2L) + nep? (L2L)

e Communication estimate:
Diagonal nc(L—k—1)

Lateral 2"% for incidence dimesion m
@ Leverage existing work on graph partitioning
e ParMetis

M. Knepley (UC) SC Gyér'10  17/38


http://www.cs.umn.edu/parmetis

Parallelism

Parallel Tree Implementation

Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

@ Good partitions exist for non-uniform distributions
2D O (v/n(log n)3/?) edgecut
3D O (n?/3(log n)*) edgecut

@ As scalable as regular grids

@ As efficient as uniform distributions

@ ParMetis will find a nearly optimal partition

M. Knepley (UC) SC Gyér'10  18/38


http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

Parallelism

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

@ Good partitions exist for non-uniform distributions

2D C; = 1.24’:Co for random matching
3D C; =1.21'Cy?? for random matching

@ 3D proof needs assurance that averge degree does not increase

@ Efficient in practice

M. Knepley (UC) SC Gyér'10  19/38


http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

Parallelism

Parallel Tree Implementation

Advantages

e Simplicity

M. Knepley (UC) SC Gyér'10  20/38



Parallelism

Parallel Tree Implementation

Advantages

e Simplicity

e Complete serial code reuse

M. Knepley (UC) SC Gyér'10  20/38



Parallelism

Parallel Tree Implementation

Advantages

e Simplicity
e Complete serial code reuse

e Provably good performance and scalability

M. Knepley (UC) SC Gyér'10  20/38



Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.
M. Knepley (UC) SC Gydr 10 21/38



£
8
°©
S
©
s

istribution
Here local trees are assigned to processes:

Local Tree D

hhhhhhhhhhhhhhhhhHh

hhhhhhhhhhhhhhhhHh

22/38

Gysr 10

SC

M. Knepley (UC)



Parallelism
Parallel Data Movement

@ Complete neighbor section

© Upward sweep

@ Upward sweep on local trees
@ Gather to root tree
© Upward sweep on root tree

© Complete interaction list section

© Downward sweep

@ Downward sweep on root tree
@ Scatter to local trees
© Downward sweep on local trees

M. Knepley (UC) SC Gyér'10  23/38



Parallelism

PetFMM Load Balance

0.8

NG
'\“\“/.

0.2
uniform 4ML8R5 —8—
uniform 10ML9R5 —e—
spiral IML8R5 —x—
0 ‘ spiral w/space-filling IML8RS —=—
2 4 8 16 32 64 128 256

M. Knepley (UC) : Gyor 10



(b) 4 cores

£
=
°
s
<4
a

=
9
p—
-]
O
o
p—
§
o
()
o
T
©
o
(@)
—l

(a) 2 cores

o
2
>
2
[o%
@
C
=
=

Here local trees are assigned to processes for a spiral distribution




0
(3]
~
[to}
Y

c =
je] 2
o
>
O
= E
=
@ FHE==
S HEEEER 2
[ " s
s B 5
© Ak i
— SEE I.ﬂ\
() =
o
n
(]
(/)]
wn
3
o a
5 a
= [e]
m —
g C w
2 3
= 5 8
Q0 0 <
= © ©
N2 m S
()] @ = s
()] 10} 2
=y = g
o g
o o g
I ° =
% o
©
| T




0
(3]
=
[to}
Y

c =
.0 2
=
>
Qo
S
=
0
© n
© o
= IS}
F <
© 2
— =
o
e,
n
(]
(/)]
wn
3
o a
g o
° @)
< -—
& C S
= 2
= D o
2 . 8
= o o
9 I >
(0]
D % ~ 5
()] 10} 2
- = g
= g
o o g
I ° =
S
]
| T




What Changes on a GPU?

Outline

e What Changes on a GPU?

M. Knepley (UC) SC Gyér'10  26/38



What Changes on a GPU?

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

@ Up to 85% of time in FMM

e Tradeoff with direct
interaction

@ Dense matrix multiplication
e 2p® rows
@ Each interaction list box
o (69 —39)2d
ed=2L=28
e 1,769,472 matvecs

M. Knepley (UC) SC Gyor 10 27/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

M. Knepley (UC) SC Gyér'10  28/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

M. Knepley (UC) SC Gyér'10  28/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes

M. Knepley (UC) SC Gy6r 10

28/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes
@ Plenty of work per thread (81 Kflops or 36 flops/byte)

M. Knepley (UC) SC Gyor 10

28/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

M. Knepley (UC) SC Gyor 10

28/38



What Changes on a GPU?

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) SC Gyor 10

28/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals
@ Same work

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1"<’ Jj”) it )

@ Traverse matrix by perdiagonals
@ Same work
@ No memory limit on concurrency

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = _1"<’ Jj”) =i 2)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L

Version 1

Apply M2L transform matrix-free

m2lj = —1' <’ er/) i1 )

Additional problems: Not enough parallelism for data movement
@ Move 27 LE to global memory per TB
@ 27 x 2p = 648 floats
@ With 32 threads, takes 21 memory transactions

M. Knepley (UC) SC Gyér'10  29/38



What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product

M2L =

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
o qi T+ it
m2l; = —1 < ) )t (3)

@ Each thread does a dot product

@ Cannot use diagonal traversal, more work —r i

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

M2L =

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

GPU M2L
Version 2
One thread per element of the LE
YT A A
m2l; = —1 < ) )t (3)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t~ '
e All threads loop to p + 1, only store ¢~/

@ Loop unrolling

M2L =

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-'  Downward Sweep
Loop unrolling
No thread synchronization

300 GFlops

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

GPU M2L

Version 2

One thread per element of the LE

m2l; = —1"<' Jj”) it 3)

Each thread does a dot product

Cannot use diagonal traversal, more work

Avoid branching
o Each row precomputes t—/~ 15x Speedup of

e All threads loop to p + 1, only store t=-'  Downward Sweep
Loop unrolling
No thread synchronization

Examine memory access

300 GFlops

M. Knepley (UC) SC Gyér'10  30/38



What Changes on a GPU?

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU | GPU
Bus Width (bits) 64 | 512

Bus Clock Speed (MHz) 400 | 1600
Memory Bandwidth (GB/s) 3] 102
Latency (cycles) 240 | 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley (UC) SC Gyér'10  31/38



What Changes on a GPU?

GPU M2L

Version 3

Coalesce and Overlap memaory accesses
Coalescing is
@ a group of 16 threads
@ accessing consective addresses
@ 4,8, or 16 bytes
@ in the same block of memory
e 32, 64, or 128 bytes

M. Knepley (UC) SC Gyér'10  32/38



What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Memory accesses can be overlapped with
computation when

@ a TBis waiting for data from main memory
@ another TB can be scheduled on the SM

@ 512 TB can be active at once on Tesla

M. Knepley (UC) SC

Gyo6r '10

32/38



What Changes on a GPU?

GPU M2L

Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

@ MULT and FMA must execute simultaneously

480 GFlops
@ 346 GOps
25x Speedup of
@ Without this, peak can be closer to 600 GF Dovenwarg
Sweep

M. Knepley (UC) SC Gyér'10  32/38



What Changes on a GPU?
Design Principles

M2L required all of these optimization steps:
@ Many threads per kernel

@ Avoid branching
@ Unroll loops
@ Coalesce memory accesses

@ Overlap main memory access with computation

M. Knepley (UC) SC Gyér'10  33/38



PetFMM
Outline

© PetFMmM

M. Knepley (UC) SC Gyér'10  34/38



PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc
@ Same open source license
o Uses Sieve for parallelism
@ Extensible design in C++
o Templated over the kernel
o Templated over traversal for evaluation
@ MPI implementation
o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
e 86% efficient strong scaling on 64 procs
@ Example application using the Vortex Method for fluids

@ (coming soon) GPU implementation

M. Knepley (UC) SC Gyér'10  35/38


http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

PetFMM

PetFMM CPU Performance

Strong Scaling

256

128

Speedup

./ uniform 4ML8R5 —&—
s uniform 10ML9R5 —e—

2 ¥ spiral IMLBR5 —>»— |
spiral w/ space-filling IML8R5 —&—
1 ) ) Perfect Speedup - - - - -
2 4 8 16 32 64 128 256

M. Knepley (UC) SC Gyér'10  36/38



PetFMM

PetFMM CPU Performance

Strong Scaling

Evaluation —+—

10° ; ; ;
ME Initialization —»—
\E Upward Sweep —%—
\:Q Downward Sweep —o—

Load balancing stage —e—

10 :’i( Total time —8—
\\
@ N \
E T~ -
= 10° —
\ \
101 3
/ \s
10 ‘2 4 8 16 32 64 128 256

M. Knepley (UC) SC Gyér'10  36/38



Largest Calculation With Development Code

@ 10,648 randomly oriented lysozyme molecules
@ 102,486 boundary elements/molecule

@ More than 1 billion unknowns

@ 1 minute on 512 GPUs

M. Knepley (UC) SC Gy6r 10 37/38



Largest Calculation With Development Code

@ 10,648 randomly oriented lysozyme molecules
@ 102,486 boundary elements/molecule

@ More than 1 billion unknowns

@ 1 minute on 512 GPUs

M. Knepley (UC) SC Gyor 10 37/38



How Will Algorithms Change?

o Massive concurrency is necessary

o Mix of vector and thread paradigms
o Demands new analysis

o More attention to memory management

» Blocks will only get larger
o Determinant of performance

o Urgent need for reduction in complexity
o Complete serial code reuse
o Modeling integral to optimization

M. Knepley (UC) SC Gyér'10  38/38



	Complementary Work
	Short Introduction to FMM
	Parallelism
	What Changes on a GPU?
	PetFMM

