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Solvation computation
can benefit from

operator simplification,
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Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics
Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein
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Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge o,

—‘/ 2
(r)d=r
o(r) +¢ /8n r) 4x||F — r’|] Zc‘)n 34w|\r—rk|]

(Z+eD*)o(F) =

where we define
R €] — €
e=21"" "9
€+ €y
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Approximating the Poisson Operator
Outline

0 Approximating the Poisson Operator
@ Approximate Operators
@ Approximate Boundary Conditions
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Approximating the Poisson Operator
Problem

Boundary element discretizations of solvation:
e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Approximating the Poisson Operator Approximate Operators

Outline

0 Approximating the Poisson Operator
@ Approximate Operators
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Approximating the Poisson Operator Approximate Operators

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:
N

j _ 1 (1 1 qiqj
b () e
es 81 €y €/ 2,,,: r//2 + RiRje—r,]?/4R,Rj

where the effective Born radius is

1 1 1\ 1
R=————|—=
" 8r <e// el> E;
where E; is the self-energy of the charge g;, the electrostatic energy
when atom J has unit charge and all others are neutral.
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Approximating the Poisson Operator Approximate Operators

GB Problems

e No global potential solution, only energy
e No analysis of the error
e For example, Salsbury 2006 consists of parameter tuning
e No path for systematic improvement
e For example, Sigalov 2006 changes the model
e The same atoms have different radii in different

@ molecules,
@ solvents
e temperatures

e LOTS of parameters
o Nina, Beglov, Roux 1997
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Approximating the Poisson Operator

GB Problems

Approximate Operators

TABLE 2: Atomic Born Radii Derived from Solvent
Electrostatic Charge Distribution Tested with Free Energy
Perturbation Methods in an Explicit Solvent®

N I I . I atom radius (A)
Backb
e O g Oba pOtentIa So C 2A04ac OLIT:rbonyIC,pepﬁdebackboue
H o 152 carbonyl oxygen
e No analysis of the err 223 pepide ivogen
CA 286 all CA except Gly
e For example, Salsbury 20( ca 238 Glyonly
. Hydrogens
e No path for systematic= 000" " all ydrogens
) Side Chains
CB 267 all resid
e For example, Sigalov 200€ &, 2 Va]:ge;;}rz%ys’MMh&m
P, , Glu
e The same atoms have o 244 Tl Leu Arg Lys
CD.CG 198 Asp, Glu, Asn, Gln
CB,CG,CD 198 Pro onl:
o mcIJIecuIes, CE*,CD*,CZ, 200 Tyzfphznngs
CE*,CD*, CZ*,CH2 178 Trp ring onl;
o solvents CE 210 Mrgtr;‘:ﬂgyo Y
e temperatures CZ.CE 280 ArgLys
OE*, OD* 142 Glu, Asp, Asn, Gln
OG* 164 Ser, Thr
o LOTS of parameters g; 15 Ty
. NH* NE,NZ 213 Arg, L
e Nina, Beglov, Roux 1997 Ne2/Np> 515 Gl Ao
NE2,ND1 231 His only
NE1 240 Trp
S* 200 Met, Cys
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Approximating the Poisson Operator Approximate Operators

Bioelectrostatics

Mathematical Model

The reaction potential is given by

r =C
() = /47751||r—r/|| 7

which defines Ggs, the electrostatic part of the solvation free energy

AGes = ! <q, ¢R>

5 (q,Lq)
]
= 5(a.cA"'Bq)
where
—’/ C13—*/
Bg =~ an *)47r|\r—r/|\
Ao = Z+6D*
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Approximating the Poisson Operator Approximate Operators

BIBEE

Approximate D* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM e; - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocea = Bq

Lower Bound:
no good physical motivation

(1 -i-;) olB = Bq

10 20 an 40 50 60 70 a0
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Approximating the Poisson Operator Approximate Operators

BIBEE

Approximate D* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM e; - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocea = Bq

Preconditioning:
consider only local effects

Up:Bq

10 20 an A0 50 60 T a0
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Approximating the Poisson Operator Approximate Operators

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy AGes has upper and
lower bounds given by

1 e\ ! 1 1 1 &\
5 (1 + 2) (q.CBq) < 5 <q, CA Bq> <3 (1 - 2) (q,CBq),

and for spheres and prolate spheroids, we have the improved lower

bound, 1 1
I I —1
5 (q.CBa) < 5 (9. CA™'Bg).
and we note that ’
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Approximating the Poisson Operator Approximate Operators

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

| will break the proof into three steps,
@ Replace C with B
@ Symmetrization
@ Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

[ ()PP
0= | a7
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: First Step

Replace C with B

The potential at the boundary I given by
¢Cou/omb(,-:) — CTC]
can also be obtained by solving an exterior Neumann problem for ,
¢Coulomb(;:) - Sr
2
= S(z-2p")7(3Bag)
= ES(I - 2D*)'Bg
€

so that the solvation energy is given by

% <q’ CA™' Bq> - 1? <8(I - ZD*)_1 Ba, (I+ éID*)_1Bq>
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD* =DS

and we have
S = 81/281/2

which means that we can define a Hermitian operator H similar to D*
H = 81/2D*8—1/2

leading to an energy

% (g.cA"'Bq) - % (Bq,S"3(T — 2H) (T + eH)'s"/2Bq)
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Third Step

Eigendecomposition

The spectrum of D* is in [, 1), and the energy is
1 1 _ A
5(0.CATBg) =Yz (1-20) " (1 +an) '

where

and
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Approximating the Poisson Operator Approximate Operators

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1 _ 1 _ e\ !

I

]
% (9.CAz'Bg) =Y Z(1-20) 7"
i

1 - 1 _ e\ !
§<q,CALE}Bq>:ZE(1 —2)\) 1<1+2> X2

where we note that
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Approximating the Poisson Operator Approximate Operators

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures
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-140f & GBMV
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Time (ps)

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Approximating the Poisson Operator Approximate Operators

Crowded Protein Solution

Important for drug design of antibody therapies
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Approximating the Poisson Operator Approximate Operators

BIBEE Scalability

-0—-8 GPUs

== 16 GPUs
=32 GPUs
—o—64 GPUs
-8- 128 GPUs
10' H 256 GPUs
=¥-512 GPUs

Time per matrix—-vector product (s)

° 10° 10’ 10° 10° 10"
Number of boundary elements

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Approximating the Poisson Operator Approximate Boundary Conditions

Outline

0 Approximating the Poisson Operator

@ Approximate Boundary Conditions
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Approximating the Poisson Operator Approximate Boundary Conditions

Bioelectrostatics
Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein

Surface
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region | is given by

and the potential in Region Il is given by

®y = Z Z n'jr’q P (cos 0)e™.

n=0 m=-—n
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ¢ is expanded in a series

co N
Y= Z Z BnmrnPrr,n(COS 9)e’m¢’.

n=0 m=—n

and the source distribution is also expanded

n

Mo

k=1 n=0 m=—n

M. Knepley (Rice) Solvation

f: Z Enm P™(cos 0)e™.
61‘I’*I’k‘ €1rn+1
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Approximating the Poisson Operator Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

Pilr=p = Pulr=p

9o, _ 0%
€/ or r=b — €l or r=b

we can eliminate C,n,, and determine the reaction potential coefficients
in terms of the source distribution,

_ 1 (6/—6//)(n+1)
E/bZH+1 en—+ e,,(n+ 1) nm-

B nm
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Approximating the Poisson Operator Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations
Acra=T (145
CFA = 5
Ap=T

have an equivalent PDE formulation,

Q c
I € OP; 0P OYcra
AP = r—r R Y B _
e1APcrap k§1 QS (r — Tk) T Ir=b =5 5y Ir=b
enA®Pcrap =0 or
1]y = 3¢ —ey 007, 0%y e
Ilr=>b Ilr=>b e +ey Or r=b or or r=b

where ¢ is the Coulomb field due to interior charges.
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Approximating the Poisson Operator Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

0 20 an 40 50 G 7 an

BEM eigenvector e; - ; BIBEE/P eigenvector
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)

@ Note that [ G(r,r')o(r')dl satisfies the bulk equation
and decay at infinity
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)

@ Note that [ G(r,r')o(r')dl satisfies the bulk equation
and decay at infinity

@ Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis
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Approximating the Poisson Operator Approximate Boundary Conditions

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.
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Approximating the Poisson Operator Approximate Boundary Conditions

Series Solutions

Note that the approximate solutions are separable:

B _ 1
"m_e1n+eg(n+1)%m
1 1
BCFA_
nmo = ony 1M
1 1
P _
nm_61+62n+2%m
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Approximating the Poisson Operator Approximate Boundary Conditions

Series Solutions

Note that the approximate solutions are separable:

1
€1nN + 62(/7 +1
1 1
BCFA _
nm €2 2n +
1 1

61 —|-62n+

Ynm
)

1 e 1 /nm

1 —= Ynm-

If e, = ey = €, both approximations are exact:

1

Bym = BCFA Br/?m = anm'
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Approximating the Poisson Operator Approximate Boundary Conditions

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

'700
Bon — BCFA
00 — €

9
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Approximating the Poisson Operator Approximate Boundary Conditions

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

'700
Bon — BCFA
00 — €

9

whereas BIBEE/P approaches the exact response in the limit n — oc:

1
lim Byn = lim BY =

n—oo n—oo (61 -+ 62)n7nm'
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Approximating the Poisson Operator Approximate Boundary Conditions

Asymptotics

In the limit €1 /e2 — 0,

. Ynm
lim Byp=—""+
61/624)0 m 62(n+ 1)
lim BGHA—
61/62—>0 nm 62(2n+ 1)
. Ynm
im BP — _1m
er/ee0 € (n + %)

so that the approximation ratios are given by

BSA  n+1 Bim  n+1
Bom  2n+1’ Bnm_n—l-%.
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Approximating the Poisson Operator Approximate Boundary Conditions

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

0 ‘ : ‘ ‘ ‘
o BIBEE, ) =-0.20
o BIBEE/CFA

< 5007 & BIBEEP ]
£
© og
£ -1000- ce S 8
= %
9 Al
[0 a A
{0 -1500} a .
Q o ° ° ©°
o a %8
[ o sa
8 -2000f R .
g oo a3
= o

-2500 . R g

a
-3000 ‘ ‘ ‘ ‘ ‘
3000 -2500  -2000  -1500  -1000  -500 0

Reference Free Energy (kcal/mol)
Bardhan, Knepley, JCP, 2011.
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Approximating the Poisson Operator Approximate Boundary Conditions

Basis Augmentation

We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),

using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Approximating the Poisson Operator Approximate Boundary Conditions

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/| is
accurate for spheres, but must be extended for ellipses.

Spheres Ellpsoids

oz .
'A‘MI IM"E‘.'.&‘

: iy i
-nz - a . .
-na . EEEENFA

Relalive error
Relative error
= &

EBEEN

Maonopole Manopole
{a) (b}

M. Knepley (Rice) Solvation UNC6 36 /60



Approximating the Poisson Operator

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the

Approximate Boundary Conditions

octopole, to recover 5% accuracy for all synthetic proteins tested.

Spheres Ellpsoids
1 1
o8 oA
oa oa
§ aa ‘g_ [T
g a ‘."‘.“ _:g_ ol & = & ~PR
%—na EEEEM % ET
o o
-n4 BEEED -na
=-0d EEEET -na
-na BEEED -8
_-IIII - 4 -4 -2 L'} 2 4 a L] m - -1 -H - - -2 [i] 2 4 A L} m
Maonapole Monopole
(b) (d)
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Approximating the Poisson Operator Approximate Boundary Conditions

Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Approximating the Poisson Operator Approximate Boundary Conditions

Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

e are more accurate than required by intermediate
design iterations
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Approximating the Poisson Operator Approximate Boundary Conditions

Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

e are more accurate than required by intermediate
design iterations

@ Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry

1.8 ‘ : :
O Explicit-solvent molecular dynamics FEP
o —— Standard Maxwell boundary condition
1.6F O Proposed nonlinear boundary condition
]
14§ m gy
o
3z 12 1
O c
]
1 =
0.8 ey m o
°© o
06 L L L
-1 -0.5 Eé)oul 0.5
n
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry
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Improving the Poisson Operator

Origins of Electrostatic Asymmetry

10, Deeply buried charge = The nonzero slope at q=0 is the static potential

0
v—g -10
= 20 e
g 0 Asymmetry for a deeply
o O Symbols: explicit-solvent free- buried charge is exclusively
-go 40 ¥ " | G energy perturbation calculations| X1y due to the static potential
E s
2y 50
T - ngszlplfcew“?'hnear . Asymmetry for a solvent-exposed
— model plus static potentia charge results from both the static
-70 17(=) 2 static potential and the hydrogen-oxygen
Solvent-exposed AG = fL(Jr)qz i e =0 lsrize difference e e
-80 charge 2LV + g, ¢ 20
-90 - -
-1 -0.5 0 0.5 1
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Improving the Poisson Operator
Main Idea

Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy
and deriving the radii,

8¢/ 8¢//
€Iy = €l

on on
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Improving the Poisson Operator

Main Idea

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

b b
(e — Aeh(Ep)) a_l = (e — Ach(Ep)) 5'n”
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Improving the Poisson Operator
Main Idea

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,

Q
(1 N\ oG
(I+h(En)+€<§I+,D>)UEk1%

where h is a diagonal nonlinear integral operator.
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Improving the Poisson Operator

SLIC

Boundary Perturbation

h(E,) = atanh (BE, — v) + p

where
a Size of the asymmetry
£ Width of the transition region
~ The transition field strength
n Assures h(0) =0, so u = —atanh(—v)
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Improving the Poisson Operator

Accuracy of SLIC

Residues
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Improving the Poisson Operator

Accuracy of SLIC

Protonation
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Improving the Poisson Operator

Accuracy of SLIC
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Improving the Poisson Operator

Accuracy of SLIC

Synthetic Molecules
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Asymmetry in Electrostatic Free Energy (kcal/mol)




Improving the Poisson Operator

Accuracy of SLIC

Synthetic Molecules
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Improving the Poisson Operator
Thermodynamics

The parameters show linear temperature dependence
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Improving the Poisson Operator

Model Validation

Courtesy A. Molvai Tabrizi

Formamide
CH;NO

Water
H,0

Methanol Acetonitrile Nitromethane
CH,0H C,H;N CH;NO,
(%
(%

Dimethyl sulfoxide
C,H,0S

o

Ethanol Dimethyl formamide
C,H;OH C;H,NO

o

Propylene carbonate
CH,C,H;0,C0
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Improving the Poisson Operator

Model Validation

Courtesy A. Molvai Tabrizi

Solvent | r, (A) €out(T) €0ut (25°C)
W 1.370 | €out = 87.740 — 4.0008e—1 T + 9.398¢—4 T2 — 1.410e—6 T3 78.3
MeOH | 1.855 | logyg €our = log;((32.63) — 2.64e—3(T — 25) 32.6
EtOH | 2.180 | logyg €our = log;((24.30) — 02.70e—3 (T — 25) 24.3
F 1.725 | €our = 109 — 7.2e—1 (T — 20) 105.4
AN 2135 | €out = 37.50 — 1.6e—1 (T — 20) 36.7
DMF 2.585 | €our = 42.04569 — 2.204448¢—1 T + 7.718531e—4 T2 — 1.000389¢—6 T3 37.0
DMSO | 2.455 | €pur = —60.5 + (5.7e4/(T + 273.15)) — (7.5¢6/(T + 273.15)%) 46.3
NM 2.155 | logo €out = 10g;4(35.8) — 1.89¢—3 (T — 30) 36.6
PC 2.680 | €our = 56.670738 + 2.58431e—1 T — 7.7143e—4 T? 62.6

M. Knepley (Rice) Solvation
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Improving the Poisson Operator

Model Validation

Courtesy A. Molvai Tabrizi
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Improving the Poisson Operator

Model Validation

Courtesy A. Molvai Tabrizi

Dimethyl formamide @ 25°C
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Improving the Poisson Operator

Model Validation

Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan,
Generalising the mean spherical approximation as a
multiscale, nonlinear boundary condition at the
solute-solvent interface,

Molecular Physics (2016).
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Improving the Poisson Operator

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

Solvent | lon | AG (kJmol™") | AS JK "mol'") | C, UK~ "mol"")
W F- -430 (-429) -67 (-115) -86 (-45)
Rb* -326(-319) 178 (-175) 55
MeOH = 415 16 79 (-131)
Rb* 2319 (-313) 197 (-187) 128
EtOH = 405 145 153 (-194)
F Rb* -340 (-334) -135 (-130) 27
F- -418 128 36 (28)
AN F- -390 192 147
DMF F- -389 230 105
Rb* -348 (-339) 151 (-180) 32
DMSO == -400 -160 186(60)
- Rb* 324 (-318) -186 (-183) 19
F- -391 -182 95(71)
PC F- -394 149 67

M. Knepley (Rice)

Experimental Data in Parentheses
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Improving the Poisson Operator

Thermodynamic Predictions
Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, M.G. Knepley, and
J.P. Bardhan,

Predicting solvation thermodynamics with dielectric
continuum theory and a solvation-layer interface
condition (SLIC).

Submitted to Journal of Physical Chemistry Letters
(2016).
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Improving the Poisson Operator
Where does SLIC fail?

o Large packing fraction

» No charge oscillation or overcharging
o Could use CDFT

o No dielectric saturation
o Could be possible with different function

» No long range correlations
» Use nonlocal dielectric
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Future Work
Future Work

o More complex solutes

o Mixtures

o Integration into community code
o Psi4, QChem, APBS

o Integrate into conformational search
» Kavrakis Lab at Rice
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Thank You!

http://www.caam.rice.edu/~mk51
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