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“The development of linear programming is -- in my opinion
-- the most important contribution of the mathematics of
the 20th century to the solution of practical problems arising

in industry and commerce.”

Martin Groetschel, 2006




Top Ten Algorithms of the Century

The Best of the 20th Century: Editors Name Top 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa’l mugabalah devolved into today’s high school
algebra textbooks. Al-Khwarizmi stressed the importance of methodical procedures for solving problems. Were he around today,
he’d no doubt be impressed by the advances in his eponymous approach.

Some of the very best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, a joint publication of the American Institute of Physics and the [EEE Computer Society. Guest editors Jack Don-garra of the
University of Tennessee and Oak Ridge National Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences at the Institute for
Defense Analyses put togeth-er a list they call the “Top Ten Algorithms of the Century.”

“We tried to assemble the 10 al-gorithms with the greatest influence on the development and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. As with any top-10 list, their selections—and non-selections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without furtherado, here’sthe CiSE top-10 list, in chronological order. (Dates and names associated with the algorithms should be read
as first-order approximations. Most algorithms take shape over ti with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis

algorithm, also known as the Monte Carlo method.
The Metropolis algorithm aims to obtain approximate solutions to numerical problems with unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for
deterministic calculation,it’s fitting that one of its earliest applications was the generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig’s algorithm is one of the most successful of all time: Linear
programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the “real” problems of industry are often nonlinear; the use
of linear programming is sometimes dictated by the computational budget.) The simplex method is an elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
] in practice is highly efficient— which in itself says something interesting about the nature of computation.
In terms of wide- ‘ ’ = =
spread use, George . . . i . .
Dantzig’s simplex 1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis
methodisamongthe at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.

most successful al-  Thege algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,
gorithms of all time. . R S R .




Top Ten Algorithms of the Century

In terms of wide-
spread use, George
Dantzig’s simplex
methodis amongthe
most successful al-
gorithms of all time.




Professor Richard Tapia



Professor Richard Tapia

“Cook, second place sucks.”



Example: sgpf5y6 (Mittelmann LP test set)

ex /.1 Primal 6398.71
ex 7.1 Dual 6484.44
ex 9.0 Primal 6406.78
ex 9.0 Dual 6484.47
ex | 1.0 Primal 6425.87
dlex | 1.0 Dual 6484.46
XPress-15 Primal 6380.45
XPress-15 Dual 6344.30
CPL-1.02.01 6480.95
GLPK-4.7 6463.66
QSopt Primal 6419.94
QSopt Dual 6480.33
Soplex 1.2.2 6473.33
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Nature,Vol. 395, | October 1998

Kepler’s conjecture
confirmed

Neil J. A. Sloane

One of the oldest unsolved problems in mathematics appears to have
been settled. On 9 August, Thomas C. Hales announced that he had
proved Kepler’'s assertion of 1611 that no packing of spheres can be
denser than a face-centred-cubic lattice.

n face-centred-cubic packing (Fig. 1),

seen in the piles of oranges in any grocer’s

shop, the spheres occupy 0.7405 of the
total space available. Ambrose Rogers
remarked’ in 1958 that “many mathemati-
cians believe and every physicist knows” that
no denser packing is possible. So why has it
taken 387 years for a proof to be found?

There are three reasons. First, technical
difficulties come from the fact that the densi-
ty of a packing is defined as the limit of the
fraction of space occupied by the balls as the
number of balls goes to infinity. This means
that (say) a million balls can be thrown away
without changing the density.

Second, even if one considers only pack-
ings without any obvious gaps, there are still

Figure 1 Cannonballs stacked in a face-centred
cubic lattice (Arlington, Virginia, about 1863).
There is no denser way to do it.

Thomas C. Hales

news and views

theorists as well as mathematicians are
interested in determining the densest sphere
packings in dimensions above three. The
sampling theorem of information theory’
says that a signal containing no frequencies
above W hertz can be reconstructed from
samples taken every 1/(2W) seconds. So a
signal that lasts for T seconds can be rep-
resented by 2WT samples. Just as three
numbers specify the coordinates of a point
in three-dimensional space, so these 2WT
samples specify a point in 2 WT-dimensional
space. The whole waveform is specified by
a single point in 2WT-dimensional space.
Similar signals are represented by nearby
points, dissimilar signals by well-separated
points. So one of the fundamental problems
in communication theory isdetermining the
densest packing of balls in high-dimensional
spaces.

This geometrical way of representing sig-
nals, at the heart of Shannon’s mathematical
theory of communication’, underlies the
high-speed modems that we now take for
granted. One of the most common coding
schemes in use today works so well because
the signals are represented as points in eight-
dimensional space.

Many beautiful packings are known in
high dimensions, and have fascinating and
unexpected connections with other branch-




“at the heart of the proof are some 100,000
linear programming problems, each involving

|00 to 200 variables and 1,000 to 2,000

constraints.’




Nature,Vol. 424, 3 July 2003

news feature

Does the proof stack up?

Think peerreview takestoolong? One mathematician has waited four
years to have his paperrefereed, only to hearthatthe exhausted reviewers
can't be certain whether his proofis correct. George Szpiro investigates.
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Grocers the world over know the most efficient way 1o stack s phuu but a mathematical proof for the method has brought reviewers to their knees.




Annals of Mathematics, 162 (2005), 1065-1185

A proof of the Kepler conjecture

By THoMmASs C. HALES™

To the memory of Ldszlo Fejes Toth

“Floating-point arithmetic was used freely in obtaining these bounds. The linear
programming package CPLEX was used (see www.cplex.com). However, the
results, once obtained, could be checked rigorously as follows.”



http://www.cplex.com
http://www.cplex.com
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MAT [][]L,M ATICS s
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General Information

Editorial Board Editor's Announcement

Submissions
Information

To encourage the submission of excellent short papers to the Annals, the editors announce that Annals papers
under 20 printed pages in length will be published on an accelerated schedule. We will also make efforts to
expedite the refereeing of excellent short papers.

Subscription
Information

Statement by the Editors on Computer-Assisted Proofs

Online Index:
1884-Present Computer-assisted proofs of exceptionally important mathematical theorems will be considered by the Annals.

Related Links The human part of the proof, which reduces the original mathematical problem to one tractable by the
computer, will be refereed for correctness in the traditional manner. The computer part may not be checked
Contact Information line-by-line, but will be examined for the methods by which the authors have eliminated or minimized
possible sources of error: (e.g., round-off error eliminated by interval artihmetic, programming error
Search minimized by transparent surveyable code and consistency checks, computer error minimized by redundant
calculations, etc. [Surveyable means that an interested person can readily check that the code is essentially
operating as claimed]).

We will print the human part of the paper in an issue of the Annals. The authors will provide the computer
code, documentation necessary to understand it, and the computer output, all of which will be maintained on
the Annals of Mathematics website online.

Last Updated: February 20,2006
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“e.g, round-off error eliminated by interval arithmetic”
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The Flyspeck Project

Introduction

The purpose of the flyspeck project is to
produce a formal proof of the Kepler
Conjecture. The name ‘flyspeck' comes
from matching the pattern /£.+*p.*x/
against an English dictionary. FPK in turn
is an acronym for "The Formal Proof of
Kepler."

Internal Links

o Flyspeck Wiki

e Formalizing the Text This is a
proposal about how to formalize
the written text of the proof.

e |MO-demo A demo on using HOL
Light, including Harrison's IMO

problem video.

External Links

Flyspeck Google Group

code for 1998 proof

McLaughlin's revision of the kepler code
QED Manifesto

Searching

What's new? | Help | Sign in

" ("search Projects ) ( Search the

Issues Source

License: MIT License

Labels: theoremproving, keplerconjecture

Featured Downloads:
flypaper.pdf

Show all

Featured Wiki Pages: Show all

FlyspeckFactSheet

Formal Text
HolLightDemo1

Groups: Flyspeck disucssion

Project owners: Join project

seanmcl, TCHales

Project members:

florian.rabe, allegristas




Exact LP Code

D. Applegate, S. Dash, D. Espinoza

Applegate and Still (1995)
Kwappik et al. (2003)
Koch (2004)

Simplex Alg —> Basis
Solve Rational Linear System
Check Optimality Conditions

Implementation based on QSopt

Increase precision on the fly (GNU-MP package)
Full simplex code with steepest edge pricing

Rational approximations of floating—point results to
avoid rational linear solves (continued fractions)

Callable library for modifying LP models
Large scale instances

QSopt _ex vs QSopt
625 Test Instances from GAMS World

Geom Mean QSopt Seconds
Small 5.7 15.8
Medium 5.2 414.6
Large 1.8 3621.5




Use of QSopt_ex

Solve each Kepler LP
Store exact dual LP solution
Verify Kepler bounds via LP duality
Computations carried out in the ML language




Rational Number Reconstruction

1
o — ]—?| < —, then P occurs as a convergent for o

q  2¢° q
Continued Fraction Expansion

ng=p mod M with M > 2¢*, then we can construct b
q

Extended Euclidean Algorithm

von zur Gathen and Gerhard (1999), Wang and Pan (2003, 2004)




Solving Rational Linear Systems

Dixon (1982): p-adaic lifting
Wiedemann (1986): solving over finite fields

Computational Studies

LaMacchia and Odlyzko (1990), Eberly et al. (2006),Wan (2006)
LinBox C++ Software




Number of instances
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lterative Refinement

Exact LU

Wiedemann
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10
Number of times slower than fastest

100




ILOG CPLEX 10.0

User’s Manual

“These default values indicate to CPLEX to stop
when an integer feasible solution has been proved to
be within 0.01% of optimality.”




Accurate Gomory Cuts

Sanjeeb Dash, Ricardo Fukasawa, Marcos Goycoolea
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Any hope for a solution!?

RSA-2048 (Formerly $200,000)
MIPs with 7,000 Variables




Optimizing Irrational Functions
Example: Euclidean TSP
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Exact Geometric Computation: LEDA, CGAL, CORE
Yap (2003) -- survey paper




Sum of Square Roots Problem

Garey, Graham, Johnson (STOC 1976),
Ron Graham in early 1980s,
O’Rourke (American Math Monthly 1981)

A1,---50n,b1,...,bn integers (k-bit)

| 2oV =22 Vbi [ #0

How small can this value be?
Polynomial bound on number of bits?

> (2n — %) k (Qian and Wang 2006), < 4}22™ (Burnikel et al. 2000)




Branch-and-Bound with Increasing Precision

Cannot Discard LPs with Integer Optimal Solutions

Must Explore Search Tree to reach all Indistinguishable Tours




500 Random Points in 1,000 by 1,000 Grid

|,188 edges after duality elimination



500 Random Points in 1,000 by 1,000 Grid

615 edges after depth-I| branching



500 Random Points in 1,000 by 1,000 Grid

Optimal Tour



48 States in 10 Days

Maura Gatensby:
“There is more poetry in walking in the footsteps of giants.”
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