
When is missing data recoverable?

Yin Zhang

CAAM Technical Report TR06-15

Department of Computational

and Applied Mathematics

Rice University, Houston, TX 77005

October, 2006

Abstract

Suppose a non-random portion of a data vector is missing. With some minimal prior

knowledge about the data vector, can we recover the missing portion from the available

one? In this paper, we consider a linear programming approach to this problem, present

numerical evidence suggesting the effectiveness and limitation of this approach, and give

deterministic conditions that guarantee a successful recovery. Our theoretical results,

though related to recent results in compressive sensing, do not rely on randomization.

1 The MDR Problem

We consider a missing data recovery (MDR) problem as follows. Suppose that a data vector

f ∈ <d contains some available data in b ∈ <m and some missing data in u ∈ <d−m; namely,

after a reordering,

f :=

[
b

u

]
, b ∈ <m, u ∈ <d−m. (1)

With some minimal prior knowledge, we seek to recover the unknown missing data u. As

an example, let us look at the image below in Figure 1 where 85% of pixels in a region on

the left half of the image are blacked out (missing). Given this badly incomplete image and

1

nothing else, can we recover the missing pixels and see what the original image looks like?

Or is this even possible at all?

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

70

Figure 1: An image with missing pixels

In this paper, we will study a linear programming technique for the problem of missing

data recovery (MDR), and will show that under suitable conditions this approach can indeed

achieve the goal of recovery.

2 MDR by Linear Programming

In fact, the only prior information required in our MDR approach is something or anything

that allows us to choose, or guess, a matrix called a frame. For example, for the data vector in

Figure 1, common knowlege in image processing enables us to guess that an inverse discrete

cosine transform (IDCT) matrix could be a suitable frame for this MDR instance. Let us

explain.

2.1 A Frame

Let Φ ∈ <d×n be a matrix with rank(Φ) = d ≤ n (so Φ may or may not be square). We

say that the columns of Φ form a frame instead of a basis because the columns are linearly

dependent whenever d < n.

2

We hope that some prior knowledge will allow us to choose, or guess, a frame Φ so that

the complete data vector f can be represented by a small number of columns of Φ; namely, f

can be sparsely represented by the frame Φ. More precisely, we call x∗ ∈ <n a representation

of f under the frame Φ if x∗ satisfies the (possibly under-determined) linear system,

Φx = f, (2)

and has the fewest nonzero components possible. On the other hand, if a representation x∗

is known, we can obtain the complete date vector from f = Φx∗.

Let us partition the rows of Φ into two parts according to the indices of the available and

missing data b and u, respectively; that is, with a reordering,

Φ =

(
A

B

)
, A ∈ <m×n, B ∈ <(d−m)×n. (3)

We emphasize that the matrix A can vary from case to case depending on actual occur-

rence of the indices for the available data b. It is important to remember this dependency

of A on b and not think of A as a fixed part of Φ.

2.2 A Linear Program

With the partitioning in (3), the equations in (2) can be regrouped:

Φx∗ = f ⇒ Ax∗ = b, Bx∗ = u.

Since u is unknown, we are unable to make any use of the equation Bx = u. Therefore, our

hope for finding the representation x∗ of f lies entirely on the equations corresponding to

the available date:

Ax = b, (4)

which is of course under-determined. The fact that x∗ may be sparse under the frame Φ

and recent results in compressive sensing (see the next subsection) lead us to solving the

`1-minimization problem:

min
x
{‖x‖1 : Ax = b}, (5)

which can be easily reformulated as a linear program. The real questions now are: under what

conditions can we guarantee that the solution to (5) is actually x∗, and are these conditions

realistic in practice?

3

2.3 Related Results

Recovery of missing pixels in images by `1 minimization was proposed in [12] based on a

different motivation. The authors in [12] assume the probability model that wavelet coef-

ficients of an image with missing pixels are independent Laplacian. To reconstruct these

coefficients, they choose to maximize the likelihood of the wavelet coefficients subject to

the inverse wavelet transform equations corresponding to the available pixels. The resulting

problem reduces to, in our notation,

min

{
n∑

i=1

ci|xi| : Ax = b

}
, (6)

where x is the wavelet coefficient vector and ci > 0 are related to parameters in their

probability model.

In [8], Elad, Starck, Querre and Donoho proposed an algorithm for image inpainting that

uses sparse representations of image components to fill in missing pixels, which is the same

underlying principle that we use in this paper. The authors presented excellent experimental

results in [8].

The use of `1 minimization to find the sparse solutions to under-determined linear system

has recently been actively studied in the area of compressive (a.k.a. compressed) sensing.

In compressive sensing, a sufficiently sparse (or compressible) signal is encoded by a set of

random projections whose cardinality can be far less than the signal length itself. Then,

at a high probability, the signal can be decoded by finding the minimal `1 norm solution

to an under-determined linear system of equations just like (5). Representative works in

compressive sensing include, but not limited to, those of Candés, Romberg, and Tao [2, 3],

Donoho [6, 7], Rudelson and Veshynin [11], Gilbert and Tropp [13] and Baraniuk, Davenport,

DeVore and Wakin [1].

Compressive sensing relies heavily on randomization, using either random matrices or

randomly chosen rows of large deterministic matrices. Such randomization provides prob-

abilistic performance guarantees. In MDR, on the other hand, we cannot assume that the

portion of missing data is completely random, nor do we in general have the luxury of using

a completely random matrices as a frame. As a result, getting a performance guarantee is

much harder for MSD, making it a more challenging problem. This loss of randomization is

the main distinction between MDR and compressive sensing as far as theoretical analysis is

concerned.

4

3 Experimental Results

We present some experimental results using the linear programming approach to attack the

MDR problem.

3.1 Experiments with Synthetic 1-D Data

In these experiments, we always use the inverse discrete cosine transform (IDCT) matrices

as our frames Φ ∈ <n×n where Φ is defined by

Φij =
min(j,

√
2)√

n
cos

(
(2i− 1)(j − 1)π

2n

)
, 1 ≤ i, j ≤ n. (7)

We set the size of our data vector f = Φx∗ to 1000 among which 750 are available and

250 are missing. We construct representation vectors so they have 20 nonzeros among its

first 120 elements (the lower frequencies were picked because they produce nicer-looking

pictures).

Many numerical experiments have been performed in this setting where recoveries were

mostly, but not 100%, successful. We present results for one typical experiment and, for the

sake of reproducibility, give the Matlab script that produced the data.

%%% Matlab script for generating 1D data: A, b %%%

n = 1000; % data size

Phi = dctmtx(n)’; % get the frame

xs = zeros(n,1); % initialize x*

rand(’state’,11); % for reproducibility

k = 20; % number of nonzeros in x*

p = randperm(120); % chosen between 1 to 120

randn(’state’,11); % for reproducibility

xs(p(1:k)) = randn(k,1); % random values for x*

f = Phi*xs; % complete data vector v*

b = f(1:750); % available data b

A = Phi(1:750,:); % matrix A

The results are plotted in Figure 2, including the plots for the complete data, the available

data and the recovered data. As one can see, the one quarter of data missing has been

perfectly recovered.

5

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5
Complete data

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5
Available data

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5
Recovered data

Figure 2: Results for a 1-D experiment

3.2 Experiments with 2-D Images

We also performed experiments with 2-D images where we blacked out a portion of pixels as

missing data, and then tried to recover them under IDCT frames. With these 2-D “real life

data”, our success was far more limited than with the 1-D synthetic data. We often could not

sufficiently recover information contents from incomplete images whose information integrity

has been badly compromised. We conjecture that the main reason was perhaps that the

IDCT bases used were not sufficiently suitable for most of the tested images. On the other

hand, we did find some successes with black and white images containing simple patterns

such as characters. Here we present two of such successful examples in Figure 3.

In the first example, the original image is a sketch of a mosquito. We randomly blacked

out 70% of the pixels from the middle section of the image as the missing data. The complete,

available and recovered images are plotted on the left of Figure 3. The quality of the recovery

is sufficiently good from the viewpoint of naked eyes.

The second example is the one in Figure 1, where we have randomly blacked out 85%

6

of the pixels from the left half of the image as the missing data. The complete, available

and recovered images are given on the right side of Figure 3. This recovery quality appears

remarkably good this time.

Complete data

Available data

Recovered data

Complete data

Available data

Recovered data

Figure 3: Results for 2D experiments

These experimental results appear quite promising. On the other hand, our experiments

also reminded us the limitations of this approach (after all, it is not always possible to recover

what is really lost).

It is worth pointing out that in most image inpainting example given in the literature,

missing pixels do not sufficiently compromise the information integrity of the original images

in an overall sense. More precisely, the missing pixels are either so restricted in scope or low

in density that the basic contents of remaining images (i.e., available date) are still clearly

recognizable by naked eyes. On the contrary, in our examples the regions with missing pixels

appear to have lost their information contents at least to naked eyes. Therefore, the quality

of these recoveries is more impressive.

7

4 Theoretical Results

In this section, we give sufficient conditions that guarantee successful recoveries. These

conditions are also necessary if one is to guarantee recoveries for varying values in data

representations under a given frame. These results are simple extensions to our results in

[15].

4.1 Notation and Definition

By a partition (S, Z), we mean a partition of the index set {1, 2, · · · , n} into two disjoint

subsets S and Z so that S ∪Z = {1, 2, · · · , n} and S ∩Z = ∅. In particular, for any x ∈ <n,

the partition (S(x), Z(x)) refers to the support S(x) of x and its complement – the zero set

Z(x); namely,

S(x) = {i : xi 6= 0, 1 ≤ i ≤ n}, Z(x) = {1, · · · , n} \ S(x). (8)

We will occasionally omit the dependence of a partition (S, Z) on x when it is clear from

the context.

For any index subset J ⊂ {1, 2, · · · , n}, |J | is the cardinality of J . For a vector v ∈ <n,

similarly, vJ denotes the sub-vector of v with those components whose indices are in J . We

now introduce some definitions.

Definition 1 (S- and k-Balancedness). For any given index subset S ⊂ {1, 2, · · · , n} a

subspace N ⊂ <n is S-balanced if

‖vS‖1 ≤
1

2
‖v‖1, ∀ v ∈ N. (9)

Moreover, it is strictly S-balanced if the strict inequality holds for any non-zero v ∈ N.

A subspace N ⊂ <n is (strictly) k-balanced if it is (strictly) S-balanced for any S with

|S| ≤ k.

We observe that the properties of balancedness of a subspace are monotone. Specifically,

if a subspace is (strictly) S1-balanced, then it is also (strictly) S2-balanced whenever S2 ⊂ S1.

Therefore, in a sense the sparser a vector x is, the more likely a subspace will be S-balanced

with respect to its support S = S(x). Similarly, if a subspace is k-balanced, then it must be

(k − 1)-balanced.

8

Example 1. Consider the one-dimensional subspace in <4 spanned by the vector

[0.5000 − 0.6533 0.5000 − 0.2706]T . (10)

It is easy to see that this subspace is {i, 4}-balanced for i = 1, 2, 3, because the sum

in absolute value of the fourth component with another component is less than the sum in

absolute value of the other two components. Since the subspace is not {1, 2}-balanced, for

example, it is not 2-balanced, while it is obviously 1-balanced.

4.2 Main Results

Recall that the complete data vector f has the form:

f :=

[
b

u

]
∈ <d, b ∈ <m.

Under a given frame Φ ∈ <d×n, f has a sparsest representation vector x∗ ∈ <n that satisfies

the equation Φx∗ = f .

There are two pieces of critical information available to us: (i) the available data b, and

(ii) the sparsity of x∗ under the frame Φ. Roughly speaking, we will be able to recover the

missing data u if the representation x∗ is sufficiently sparse, the available data b is sufficiently

informative, and the part of Φ associated with the available data (namely, the A part of Φ)

has certain desirable properties.

Besides its size m, the information content of b is difficult to quantify. However, its

importance can never be overemphasized. For one thing, the size of b directly dictates the

size of A. In addition, the locations of components of b have a more subtle, yet potentially

great, influence on the properties of the matrix A.

Now we state our main results, though their proofs will be given in the next subsection.

Theorem 1. Given available date b, the missing data u can be recovered from (5) if there

exists a frame Φ such that the null space of A is strictly S-balanced for S = S(x∗), where x∗

is the sparsest solution to Φx = f and A consists of rows of Φ corresponding to b.

Moreover, to recover all possible date vector f whose representation under Φ has the same

support S, it is necessary that the null space of A is strictly S-balanced.

Theorem 1 requires the condition of S-balancedness for S = S(x∗), which is unverifiable

because x∗ is unknown. The next theorem uses more a general condition to handle different

data values under the same frame.

9

Theorem 2. Let Φ be a fixed frame. Given any available data b, let A consist of the rows

of Φ corresponding to b and x∗ be the sparsest solution to Φx = f with k nonzeros. Then

the missing data u can be recovered from (5) if (a) the null space of A is strictly k-balanced,

and (b) x∗ remains the sparsest solution to Ax = b.

Moreover, to recover all possible date vector f whose representation under Φ has k nonze-

ros, conditions (a) and (b) are also necessary.

We mention that condition (b) is imposed out of a technical necessity. Since x∗ is the

sparsest solution to Φx = f , it is the sparsest simultaneous solution to both Ax = b and

Bx = u. Once we take away the equation Bx = u, Ax = b can permit a sparser solution.

At this point, we do not know whether or not condition (b) is implied by condition (a), and

hence have not been able to rule it out.

From our experimental results, we know that the conditions in the two theorems do hold

sometimes. Here we consider a simple example to further demonstrate the point.

Example 2. Consider the 4× 4 inverse discrete cosine transform matrix:

Φ =

0.5000 0.6533 0.5000 0.2706

0.5000 0.2706 −0.5000 −0.6533

0.5000 −0.2706 −0.5000 0.6533

0.5000 −0.6533 0.5000 −0.2706

 . (11)

For any data vector f = Φx∗, let the available data b ∈ <3 be the first three components

of f . Then the missing data u ∈ < is the fourth component of f . Since Φ is orthogonal,

the null space of A, where A is the first three rows of Φ, is spanned by the fourth row of Φ

which is nothing but the vector in Example 1. As is mentioned in Example 1, this subspace

is strictly 1-balanced and {i, 4}-balanced for i = 1, 2, 3.

In fact, similar conclusions can be made for subspaces spanned by each of the rows of Φ.

By our theorems, a missing single component, wherever it occurs, can always be recovered

if the data vector is a multiple of a single column of Φ, i.e., the number of nonzeros in x∗ is

k = 1.

When the data vector is a linear combination of two columns of Φ (i.e.,k = 2), a missing

component can sometimes be recovered but not always, depending on how the data vector

is composed.

10

Let b be the first and the fourth components of the data vector f . Can we still recover

the other two components of f? Now the null space of A is spanned by the second and the

third rows of Φ. Any vector in this two-dimensional subspace is of the form:

v =

0.5000(α + β)

0.2706(α− β)

−0.5000(α + β)

−0.6533(α− β)

 .

It is easy to see that this subspace is not even 1-balanced, but is strictly S-balanced for

S = {2}. Hence the two missing components can be recovered if the data vector is a

multiple of the second column of Φ.

Moreover, the subspace is also S-balanced for S = {1, 2} and S = {2, 3}, but is not

strictly balanced. In these cases, the linear program from (5) has multiple optimal solutions,

preventing a unique recovery.

4.3 Technical Lemmas and Proofs

Recall that the matrix A ∈ <m×n consists of the rows of a frame Φ corresponding to the

available date b. We now consider another `1-minimization problem (also equivalent to a

linear program):

min
y
‖CT y − c‖1, (12)

where C ∈ <(n−m)×n is such that rank(C) = n−m and ACT = 0, and

c = CT ŷ + x̂ (13)

for some fixed ŷ ∈ <n−m and x̂ ∈ <n. Clearly, the rows of C span the null space of A.

The reason for us to consider problem (12) is that solving (12) is equivalent to solving

(5), as is stated in the following lemma.

Lemma 1. Let c be defined in (13) with fixed ŷ and x̂. If ŷ solves (12), then x̂ solves (5)

with b = Ac, and vice versa.

For a proof of the lemma, we refer readers to [14]. While problem (5) is often called basis

pursuit [5], among different names, problem (12) is often called error correction [4]. The

equivalence of these two has been first observed in [3, 11], and then formalized in [14].

The next lemma is essentially adopted from [15].

11

Lemma 2. Let c be defined in (13) with fixed ŷ and x̂. Then ŷ uniquely solves (12) if the

null space of A (i.e., the range space of CT) is strictly S-balanced for S = S(x̂).

Moreover, ŷ uniquely solves (12) for all possible values of x̂ with the same support S only

if the null space of A is strictly S-balanced.

Proof. Let v = v(y) := CT (y − ŷ) for any y ∈ <d−m and let S := S(x̂). Then for any y 6= ŷ,

‖CT y − c‖1 = ‖CT (y − ŷ)− x̂‖1 = ‖v − x̂‖1

= ‖vS − x̂S‖1 + ‖vZ‖1

≥ ‖x̂S‖1 − ‖vS‖1 + ‖vZ‖1

= ‖x̂‖1 + (‖vZ‖1 − ‖vS‖1)

≡ ‖CT ŷ − c‖1 + (‖vZ‖1 − ‖vS‖1).

Therefore, ŷ is the unique minimizer of (12) if ‖vZ‖1 > ‖vS‖1, or equivalently ‖vS‖1 < 1
2
‖v‖1,

for any nonzero v in the null space of A, meaning that the null space of A is strictly S-balanced

for S = S(x̂).

On the other hand, if we allow x̂ to vary in value while keeping the same support S, the

inequality,

‖vS − x̂S‖1 ≥ ‖x̂S‖1 − ‖vS‖1,

becomes an equality for any given v if x̂, component-wise, has the same sign as v and has

larger or equal magnitude than v. This proves the necessity of strict S-balancedness for ŷ

to be the minimizer for all x̂ with the same support S, completing the proof.

Now we are ready to prove Theorems 1 and 2. Let x̂ = x∗ in Lemma 2 where x∗ is the

representation of f under Φ. The strict S-balancedness of the null space of A for S = S(x∗)

ensures that ŷ uniquely solves (12) with c = CT ŷ + x∗. Hence, x∗ uniquely solves (5) by

Lemma 1, and the missing data can be recovered as u = Bx∗. This proves Theorem 1.

Theorem 2 can be proven similarly.

4.4 Robustness with respect to Approximate Sparsity

In practice, exact sparsity in terms of zeros and nonzeros seldom happens. Instead, we will

see “approximate sparsity” where only a small number of components of x∗ have relatively

large absolute values while all the rest have relatively small absolute values. Although our

12

theory is developed for exact recovery under the assumption of exact sparsity, it can be

easily extended to the situations of approximate recovery under approximate sparsity by

invoking the well-known fact that the unique solution of the linear program from (5) is

Lipschitz continuous with respect to the available data b, i.e., the right-hand side (see [10]

for example).

5 Final Remarks

We have obtained encouraging experimental results and a general theoretical framework

that can tell, in theory, whether or not MDR can succeed. However, more theoretical and

practical problems remain open.

Theoretical difficulties arise because the balancedness properties in our theory are not

verifiable in polynomial time. As such, a polynomial-time procedure will be desirable that

enables us to compute a reasonably large bound k′ < k for any k-balanced subspace (with

k unknown) so that we can guarantee that the subspace is at least k′-balanced. Some

preliminary results in this direction have been obtained [9], but further research is much

needed to help us understand the strength and limitation of the proposed approach.

The most important practical issue is, in our view, the frame selection which will largely

determine the success or failure of an MDR attempt. We know that sparsity of representation

under a frame is a necessity, but it is not the only important factor. It is possible that clever

choices of frames (i.e. use of prior information) may enable some unexpectedly successful

recoveries.

The MDR approach may also serve as a prediction tool in situations where the available

date would be past states of a system and the missing data would be some projected future

states. If one has a good model (frame) for the overall behavior of the system, then a good

prediction may be possible. Much research is needed to explore and realize the potential of

this MDR approach.

Our preliminary results have shown a clear promise in the MDR approach that seems

capable of achieving a unparalleled recovery quality in some cases. Since MDR can hardly

utilize randomization to get probabilistic performance guarantees, it demands careful studies

on a case-by-case basis.

13

References

[1] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin. The Johnson-Lindenstrauss Lemma

Meets Compressed Sensing. Preprint, 2006.

[2] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal re-

construction from highly incomplete frequency information. IEEE Trans. Inf. Theory

52 (2006), no. 2, 489509.

[3] E. Candès and T. Tao. Decoding by Linear Programming. IEEE Trans. Inf. Theory 51

(2005), no. 12, 4203- 4215.

[4] E. Candès and T. Tao. Error Correction via Linear Programming. 46th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’05), pp. 295-308.

[5] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by Basis Pursuit. SIAM

J. Sci. Comput., 20(1):3361, 1999.

[6] D. Donoho. Compressed sensing. IEEE Trans. Inf. Theory 52 (2006), no. 4, 12891306.

[7] D. Donoho. For Most Large Underdetermined Systems of Linear Equations the Minimal

`1-norm Solution is also the Sparsest Solution. Communications on Pure and Applied

Mathematics, Vol. 59 (2006), no. 6, 797 - 829.

[8] M. Elad, J-L. Starck, P. Querre, and D.L. Donoho. Simultaneous Cartoon and Texture

Image Inpainting Using Morphological Component Analysis (MCA). Journal on Applied

and Computational Harmonic Analysis, Vol. 19, pp. 340-358, November 2005.

[9] A. Eydelzon and Y. Zhang. In preparation.

[10] O. Mangasarian and T. Shiau. Lipschitz continuity of solutions of linear inequalities:

Programs and complementarity problems. SIAM Journal on Control and Optimization,

25:583–595, 1987.

[11] M. Rudelson and R. Veshynin. Geometric approach to error correcting codes and re-

construction of signals. Available from arXiv:math.MG/0502299, Feb. 2005.

14

[12] I. Selesnick, R. Van Slyke and O. Guleryuz. Pixel recovery via L1 minimization in the

wavelet domain. 2004 International Conference on Image Processing (ICIP), Vol. 3,

pp.1819-1822, 2004.

[13] J. Tropp and A. Gilbert. Signal recovery from partial information via orthogonal match-

ing pursuit. Manuscript, 2005.

[14] Y. Zhang. Solution-recovery in L1-norm for non-square linear systems: deterministic

conditions and open questions. Technical report TR05-06, Department of computational

and Applied Mathematics, Rice University, Houston, TX, 2005.

[15] Y. Zhang. A Simple Proof for Recoverability of L1-Minimization: Go Over or Under?

Technical report TR05-09, Department of computational and Applied Mathematics,

Rice University, Houston, TX, 2005.

15

