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MRI: Magnetic Resonance Imaging

MRI Scan =⇒ Fourier coefficients =⇒ Images

Is it possible to cut the scan time into half?
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Numerical Simulation

• FFT2(image) =⇒ Fourier coefficients
• Pick 25% coefficients at random (with bias)
• Reconstruct image from the 25% coefficients
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Simulation Result

Original vs. Reconstructed

Image size: 350 × 350. Reconstruction time: ≤ 1s
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Image Reconstruction Model

min
u

αTV (u) + β‖u‖1 +
1
2
‖Fpu − fp‖22

• u is the unknown image
• Fp — partial Fourier matrix
• fp — partial Fourier coefficients
• TV (u) =

∑
i ‖(Du)i‖ = ‖grad magnitude‖1

Compressing Sensing may cut scan time 1/2 or more

• Lustig, Donoho and Pauly, MR Medicine (2008)
• Research on “real-time” algorithms still needed
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CS Application: Single-pixel Camera

Single-pixel Camera Has Multiple Futures

ScienceDaily (Oct. 20, 2008) A terahertz version of the single-pixel
camera developed by Rice University researchers could lead to
breakthrough technologies in security, telecom, signal processing and
medicine. ......

Kelly Lab and Baranuik group, ECE at Rice
http://www.dsp.ece.rice.edu/cscamera/
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What’s Compressive Sensing (CS)?

Standard Paradigm in Signal Processing:

• Sample “full data” x∗ ∈ Rn (subject to Nyquist limit).
• Then compress (transform + truncation)
• Decoding is simple (inverse transform)

Acquisition can become a bottleneck (time, power, speed, ...)

Paradigm Shift: Compressive Sensing

• Acquire less data bi = aT
i x∗, i = 1, · · · ,m� n.

• Decoding is more costly: getting x∗ from Ax = b.

Advantage: Reducing acquisition size from n to m
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CS – Emerging Methodology

Signal x∗ ∈ Rn. Encoding b = Ax∗ ∈ Rm

Fewer measurements taken (m < n), but no free lunch

• prior information on signal x∗ required
• “good” measurement matrix A needed

Prior info is sparsity:
Ψx∗ has many elements = 0 (or ‖Ψx∗‖0 is small)

When does it work?

• Sparsfying basis Ψ is known
• A ∈ Rm×n is ”random-like”
• m > ‖Ψx∗‖0 sufficiently
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Sparsity is Common under Transforms

Many have sparse representations under known bases:

• Fourier, Wavelets, curvelets, DCT, ......
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Decoding in CS

Given (A,b,Ψ), find the sparsest point:

x∗ = arg min{‖Ψx‖0 : Ax = b}

From combinatorial to convex optimization:

x∗ = arg min{‖Ψx‖1 : Ax = b}

1-norm is sparsity promoting (e.g., Santosa-Symes 85)

• Basis pursuit (Donoho et al 98)
• Many variants; e.g., ‖Ax − b‖2 ≤ σ for noisy b
• Greedy algorithms (e.g., Tropp-Gilbert 05, ...)
• Big question: when is ‖ · ‖0 = ‖ · ‖1?
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Notation x(k): k -term Approximation

Keeping the k largest elements of x and setting the rest to 0
produce a k -term approximation of x , denoted by x(k).
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CS Theory – RIP Based
Assume Ψ = I. Let

x∗ = arg min{‖x‖1 : Ax = Ax̄}

A Celebrated Result:

Theorem: (Candes-Tao 2005, C-Romberg-T 2005)

If A ∈ Rm×n is iid standard normal, with high probability (WHP)

‖x∗ − x̄‖1 ≤ C(RIP2k (A))‖x̄ − x̄(k)‖1

for k ≤ O (m/[1 + log(n/m)]) (k < m < n).

– Donoho (2005) obtained similar RIP-like results.
– Most subsequent analyses use RIP.
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What Is RIP?

Restricted Isometry Property:

RIPk (A) ∈ (0,1) , min{σ} so that for some r > 0

(1− σ)r ≤
(
‖Ax‖
‖x‖

)2

≤ (1 + σ)r , ∀ ‖x‖0 = k .

• RIPk (A) measures conditioning of {[k columns of A]}
• Candes-Tao theory requires RIP2k (A) < 0.414
• RIPk (GA) can be arbitrarily bad for nonsingular G
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Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:

x∗ = arg min{‖Ψx‖1 : GAx = Gb}

E.g., orthogonalize rows of A so GA = Q and QQT = I.

Is GA always as good an encoding matrix as A is?

“Of course”. But Candes-Tao theory doesn’t say so.

Moreover,
• RIP conditions are known to be overly stringent
• RIP analysis is not simple nor intuitive (in my view)
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A Non-RIP Analysis (Z, 2008)

Lemma: For any x , y ∈ Rn and p = 0,1,√
‖y‖0 <

1
2
‖x − y‖1
‖x − y‖2

=⇒ ‖y‖p < ‖x‖p.

Define
F , {x : Ax = Ax∗} = x∗ + Null(A).

Corollary: If above holds for y = x∗ ∈ F and all x ∈ F \ {x∗},

x∗ = arg min{‖x‖p : Ax = Ax∗}, p = 0,1.

• The larger the “1 vs 2” norm ratio in Null(A), the better.
• What really matters is Null(A), not representation A.
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“1 vs 2” Ratio is Mostly Large
In the entire space Rn,

1 ≤ ‖v‖1/‖v‖2 ≤
√

n,

but the ratio� 1 in “most” subspaces (or WHP).

A result from Kashin-Garnaev-Gluskin (1978,84)

In “most” (n −m)-D subspaces S ⊂ Rn (or WHP),

‖v‖1
‖v‖2

> c1

√
m

log(n/m)
, ∀v ∈ S.

– In fact, Prob({good S})→ 1 as n −m→∞.
– A random space will give the best chance.
– Random-like matrices should do OK too.
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“1 vs 2” Ratio in R2

E.g., in most subspaces, ‖v‖1/‖v‖2 > 80%
√

2.

20 / 38



CS Theory Algorithms Conclusion

An RIP-free Result

Let x∗ = arg min{‖x‖1 : GAx = GAx̄}

Theorem (Z, 2008): For all k < k∗ and x̄ − x̄(k) “small”,

‖x∗ − x̄(k)‖p ≤ C(k/k∗)‖Pr (x̄ − x̄(k))‖p, p = 1 or 2

• Pr = orthogonal projection onto Range(AT )
• k∗ ≥ c1m/[1 + log(n/m)] WHP if Aij ∼ N (0,1)

• (compare C-T: ‖x∗ − x̄‖1 ≤ C(RIP2k (A))‖x̄ − x̄(k)‖1)

Key Difference:
• RIP: the smaller RIP, the more stable
• RIP-free: the sparser, the more stable
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RIP-free Constant C(k/k∗)

C(ν) = 1 +
1 + ν

√
2− ν2

1− ν2 ≥ 2, ν ∈ [0,1)
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Models with More Prior Information

Theoretical guarantees previously existed only for

min{‖Ψx‖1 : Ax = b}
min{‖Ψx‖1 : Ax = b, x ≥ 0}

Non-RIP analysis (Z, 2008) extends to

min{‖Ψx‖1 : Ax = b, x ∈ S}

e.g., min{‖Ψx‖1 : Ax = b, ‖x − x̂‖ ≤ δ}
e.g., min{‖Ψx‖1 + µTV(x) : Ax = b}
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Uniform Recoverability

What types of random matrices are good?
• Standard normal (Candes-Tao 05, Donoho 05)
• Bernoulli and a couple more

(Baraniuk-Davenport-DeVore-Wakin, 07)
• Some partial orthonormal matrices

(Rudelson-Vershynin, 06)

Uniform Recoverability (Z, 2008)

“All iid random matrices are asymptotically equally good”

• as long as the 4 + δ moment remains bounded
• used a random determinant result by Girko (1998)
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Algorithms for CS

Algorithmic Challenges in CS

• Large dense matrices, (near) real-time processing
• Standard (simplex, interior-point) methods not suitable

Optimization seems more robust than greedy methods

In many cases, it is faster than other approaches.

• Efficient algorithms can be built on Av and AT v .
• Solution sparsity helps.
• Fast transforms help.
• Structured random matrices help.
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Fixed-point Shrinkage

min
x
‖x‖1 + µf (x)

Algorithm:

xk+1 = Shrink(xk − τ∇f (xk ), τ/µ)

where
Shrink(y , t) = y − Proj[−t ,t](y)

• A first-order method follows from classic operator splitting
• Discovered in signal processing by many since 2000’s
• Convergence properties analyzed extensively
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New Convergence Results
(Hale, Yin & Z, 2007)
How can solution sparsity help a 1st-order method?
• Finite Convergence: for all but a finite # of iterations,

xk
j = 0, if x∗j = 0

sign(xk
j ) = sign(x∗j ), if x∗j 6= 0

• q-linear rate depending on “reduced” Hessian:

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≤
κ(H∗EE )− 1
κ(H∗EE ) + 1

where H∗EE is a sub-Hessian of f at x∗ (κ(H∗EE ) ≤ κ(H∗)),
and E = supp(x∗) (under a regularity condition).

The sparser x∗ is, the faster the convergence.
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FPC: Fixed-Point Continuation (say, µk = 2µk−1)
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FPC-AS: FPC + Active Set

1st-order CS methods slow down or fail when sparsity
approaches the threshold of the L0-L1 equivalence.

Can the number of measurements be pushed to limit?

Active Set: Combining 1st and 2nd orders

min
x
‖x‖1 +

µ

2
‖Ax − b‖22

• Use shrinkage to estimate support and signs (1st order)
• Fix support and signs, solve the reduced QP (2nd order)
• Repeat until convergence

– Solved some hard problems on which other solvers failed
– Z. Wen, W. Yin, D. Goldfarb and Z, ≥2008
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Results on a Difficult Problem

min ‖x‖1, s.t. Ax = b

where A ∈ Rm×n is a partial DCT matrix (dense).

Table: Comparison of 6 Solvers

Problem Solver Rel-Err CPU
Ameth6Xmeth2K151 FPC 4.8e-01 60.8

n = 1024 spg-bp 4.3e-01 50.7
m = 512 Cplex-primal 1.0e-12 19.8
k = 150 Cplex-dual 9.7e-13 11.1
xi = ±1 Cplex-barrier 2.7e-12 22.1

FPC-AS 7.3e-10 0.36
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TV Regularization

Discrete total variation (TV) for an image:

TV (u) =
∑
‖Diu‖ (sum over all pixels)

(1-norm of gradient magnitude)

• Advantage: able to capture sharp edges
• Rudin-Osher-Fatemi 1992, Rudin-Osher 1994
• Also useful in CS applications (e.g., MRI)

Fast TV algorithms were in dire need for many years
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FTVd: Fast TV deconvolution

(TVL2) min
u

∑
‖Diu‖+

µ

2
‖Ku − f‖2

Introducing wi ∈ R2 (grayscale) and quadratic penalty:

min
u,w

∑(
‖wi‖+

β

2
‖wi − Diu‖2

)
+
µ

2
‖Ku − f‖2

In theory, u(β)→ u∗ as β →∞. In practice, β = 200 suffices.

Alternating Minimization:

• For fixed u, {wi} solved by 2D-shrinkage at O(N)

• For fixed {wi}, u solved by 2 FFTs at O(N log N)

– Extended to color (2→ 6), TVL1, and CS
(Yang-Wang-Yin-Z, 07-08)
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FTVd vs. Lagged Diffusivity
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Color Deblurring with Impulsive Noise

Bn. RV 40%

µ:   8, t: 161s, SNR:  16dB

Bn. RV 50%

µ:   4, t: 181s, SNR:  14dB

Bn. RV 60%

µ:   2, t: 204s, SNR:  10dB

34 / 38



CS Theory Algorithms Conclusion

Extension to CS
RecPF: Reconstruction from Partial Fourier Data

min
u

TV (u) + λ‖Ψu‖1 + µ‖Fp(u)− fp‖2

Based on same splitting and alternating idea (Yang-Z-Yin, 08)

Matlab Code:
http://www.caam.rice.edu/˜optimization/L1/RecPF

Figure: 250x250 images, 17% coefficients, CPU ≈ 0.2s
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Concluding Remarks

What I have learned so far:

• CS can reduce data acquisition costs:
less data, (almost) same content

• CS poses many algorithmic challenges:
optimization algorithms for various models

• Case-by-case studies are often required:
finding and exploiting structures

• Still a long way to go from theory to practice:
but potentials and promises are real

Will CS be revolutionary?
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Compressive Sensing Resources:

http://www.dsp.ece.rice.edu/cs/

Papers and Software (FPC, FTVd and RecPF) available at:

http://www.caam.rice.edu/˜optimization/L1

Thank You!
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Happy Lunar New Year!
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