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MRI: Magnetic Resonance Imaging

MRI Scan = Fourier coefficients = Images

Is it possible to cut the scan time into half?
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Numerical Simulation

e FFT2(image) = Fourier coefficients
¢ Pick 25% coefficients at random (with bias)

¢ Reconstruct image from the 25% coefficients
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Simulation Result

Original vs. Reconstructed

Image size: 350 x 350. Reconstruction time: < 1s
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Image Reconstruction Model

) 1
mJn aTV(u)+ Bllullt + EHFpU - fPH%

e uis the unknown image

e Fp — partial Fourier matrix

» f, — partial Fourier coefficients

e TV(u) = 2 [|(Du)il| = [|grad magnitude||

Compressing Sensing may cut scan time 1/2 or more

e Lustig, Donoho and Pauly, MR Medicine (2008)
¢ Research on “real-time” algorithms still needed
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CS Application: Single-pixel Camera

Single-pixel Camera Has Multiple Futures

ScienceDaily (Oct. 20, 2008) A terahertz version of the single-pixel
camera developed by Rice University researchers could lead to
breakthrough technologies in security, telecom, signal processing and
medicine. ......
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What’s Compressive Sensing (CS)?

Standard Paradigm in Signal Processing:

e Sample “full data” x* € R"” (subject to Nyquist limit).
e Then compress (transform + truncation)
e Decoding is simple (inverse transform)

Acquisition can become a bottleneck (time, power, speed, ...)
Paradigm Shift: Compressive Sensing
o Acquire less data b; = a/ x*,i=1,--- ,m< n.
e Decoding is more costly: getting x* from Ax = b.
Advantage: Reducing acquisition size from nto m
pX
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CS - Emerging Methodology

Signal x* € R". Encoding b = Ax* € R"”

Fewer measurements taken (m < n), but no free lunch

e prior information on signal x* required
e “good” measurement matrix A needed

Prior info is sparsity:
Vx* has many elements = 0 (or ||Wx*||o is small)

When does it work?

e Sparsfying basis ¥ is known
e Ac R™"Mis ”"random-like”
S

e m> ||Wx*|o sufficiently A
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Sparsity is Common under Transforms
Many have sparse representations under known bases:
e Fourier, Wavelets, curvelets, DCT, ......
Signal: x . Signal: W x
o ulol I | I | L
T
Figure: Before and After DCT Transform R}%E
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Decoding in CS

Theory

Given (A, b, V), find the sparsest point:
x* = argmin{||¥x||o : Ax = b}
From combinatorial to convex optimization:
x* = argmin{||Vx||y : Ax = b}
1-norm is sparsity promoting (e.g., Santosa-Symes 85)

¢ Basis pursuit (Donoho et al 98)

e Many variants; e.g., ||Ax — b||2 < ¢ for noisy b
o Greedy algorithms (e.g., Tropp-Gilbert 05, ...)
e Big question: whenis || - [[o = || - ||1?

Conclusion

SOy

RICE

191 /128



Cs

Notation x(k): k-term Approximation

Keeping the k largest elements of x and setting the rest to 0
produce a k-term approximation of x, denoted by x(k).

x(20)
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CS Theory — RIP Based

Assume V¥ = /. Let
x* = argmin{||x||1 : Ax = AX}

A Celebrated Result:
Theorem: (Candes-Tao 2005, C-Romberg-T 2005)
If Ae R™"is iid standard normal, with high probability (WHP)

[x* = X1 < C(RIP24(A))[[X — X(Kk)I[+

for k < O(m/[1 +log(n/m)]) (k < m < n).

— Donoho (2005) obtained similar RIP-like results.

— Most subsequent analyses use RIP.
%
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What Is RIP?

Restricted Isometry Property:
RIP4(A) € (0,1) £ min{c} so that for some r > 0
(o< () <1 o el = &
e RIP,(A) measures conditioning of {[k columns of A]}

e Candes-Tao theory requires RIPo,(A) < 0.414
¢ RIP,(GA) can be arbitrarily bad for nonsingular G

Conclusion
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Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:
x* =argmin{||Vx||1 : GAx = Gb}
E.g., orthogonalize rows of Aso GA= Q and QQ' = I.

Is GA always as good an encoding matrix as A is?

Conclusion
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Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:
x* =argmin{||Vx||1 : GAx = Gb}
E.g., orthogonalize rows of Aso GA= Q and QQ' = I.

Is GA always as good an encoding matrix as A is?
“Of course”.

Conclusion
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Theory

Is RIP indispensable?

Invariance of solution w.r.t. nonsingular G:
x* =argmin{||Vx||1 : GAx = Gb}
E.g., orthogonalize rows of Aso GA= Q and QQ' = I.

Is GA always as good an encoding matrix as A is?
“Of course”. But Candes-Tao theory doesn’t say so.

Moreover,
¢ RIP conditions are known to be overly stringent
¢ RIP analysis is not simple nor intuitive (in my view)
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A Non-RIP Analysis (Z, 2008)

Lemma: Forany x,y e R"and p =0, 1,

1||x —
VIV < ’_y”; — Yl < X[

Define
F = {x: Ax = Ax*} = x* + Null(A).

Corollary: If above holds for y = x* € F and all x € F \ {x*},

x* =argmin{||x|p : Ax = Ax*}, p=0,1.

e The larger the “1 vs 2” norm ratio in Null(A), the better.

o What really matters is Null(A), not representation A.
RICE
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“1 vs 2” Ratio is Mostly Large
In the entire space R”,
1< |vil/lIvliz <V,
but the ratio > 1 in “most” subspaces (or WHP).

A result from Kashin-Garnaev-Gluskin (1978,84)
In “most” (n — m)-D subspaces S € R” (or WHP),

v m
— > Ciy)——, YveS.
vz = "\ log(n/m)

— In fact, Prob({good S§}) — 1 as n— m — oc.
— A random space will give the best chance.
— Random-like matrices should do OK too.

Conclusion
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“1 vs 2” Ratio in R?

A
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E.g., in most subspaces, ||v||1/[| V|2 > 80%v2. 2
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An RIP-free Result

Let x* =argmin{||x||1 : GAx = GAX}
Theorem (Z, 2008): For all k < k* and X — X(k) “small”,
1x* = X(K)llp < C(k/K)Pr(X = X(K))llp, p=10r2

e P, = orthogonal projection onto Range(A”)
o k* > cym/[1 4 log(n/m)] WHP if A; ~ N(0,1)
« (compare C-T: ||x* — Xl < C(RIP(A))|X — X(K)||1)

Key Difference:
e RIP: the smaller RIP, the more stable

. : the sparser, the more stable
A
RICE
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RIP-free Constant C(k/k*)
1+vv2 -2

Cr)=1+—2" 53— =2 ve01)
C(v)
20 0.1 0.‘2 0‘.3 0‘.4 0‘5 0‘.6 0‘7 D‘.B 0.9 % &
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Models with More Prior Information

Theory Algorithms

Theoretical guarantees previously existed only for

min{||Vx||; : Ax = b}
min{||Wx||y : Ax =b,x > 0}

Non-RIP analysis (Z, 2008) extends to

eg.,
eg.,

min{||Wx||y : Ax = b,x € S}

min{||Wx|ls : Ax = b, ||x — X|| < 5}
min{||Wx|1 + uTV(x) : Ax = b}

Conclusion
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Uniform Recoverability

What types of random matrices are good?
e Standard normal (Candes-Tao 05, Donoho 05)

e Bernoulli and a couple more
(Baraniuk-Davenport-DeVore-Wakin, 07)

e Some partial orthonormal matrices
(Rudelson-Vershynin, 06)

Uniform Recoverability (z, 2008)
“All iid random matrices are asymptotically equally good”

e as long as the 4 + § moment remains bounded

e used a random determinant result by Girko (1998)
RICE
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Algorithms for CS
Algorithmic Challenges in CS

e Large dense matrices, (near) real-time processing
e Standard (simplex, interior-point) methods not suitable

Optimization seems more robust than greedy methods
In many cases, it is faster than other approaches.

« Efficient algorithms can be built on Av and AT v.
e Solution sparsity helps.

e Fast transforms help.

e Structured random matrices help.

Conclusion
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Fixed-point Shrinkage

min x|}y + i (x)

Algorithm:

xK+1 = Shrink(x* — 7V f(x¥), /1)

where
Shrink(y, t) = y — Proj_¢ 4(¥)

¢ A first-order method follows from classic operator splitting
¢ Discovered in signal processing by many since 2000’s
e Convergence properties analyzed extensively

SSAY

RICE

2R /2R



Algorithms

New Convergence Results

(Hale, Yin & Z, 2007)
How can solution sparsity help a 1st-order method?

e Finite Convergence: for all but a finite # of iterations,
=0, if x; =0
sign(xj )= S|gn( ), if X7 # 0

e g-linear rate depending on “reduced” Hessian:

im sup X=Xl ~(Hze) —
k—o0 ka - X*H B K’(HEE) +1

where Hf. is a sub-Hessian of f at x* (k(Hgg) < k(H")),
and E = supp(x™) (under a regularity condition).

The sparser x* is, the faster the convergence. A

RICE

27 /29



Cs

Theory Algorithms

Conclusion

FPC: Fixed-Point Continuation (say, x* = 2,%1)

. u = 200
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(Numerical comparison results in Hale, Yin & Z 2007)
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FPC-AS: FPC + Active Set

1st-order CS methods slow down or fail when sparsity
approaches the threshold of the L0O-L1 equivalence.

Can the number of measurements be pushed to limit?

Active Set: Combining 1st and 2nd orders
min |x|ls + 51 Ax — b3

¢ Use shrinkage to estimate support and signs (1st order)
e Fix support and signs, solve the reduced QP (2nd order)
¢ Repeat until convergence

— Solved some hard problems on which other solvers failed
—Z. Wen, W. Yin, D. Goldfarb and Z, >2008
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Results on a Difficult Problem

min ||x||1, s.t. Ax=1b

where A € R™" is a partial DCT matrix (dense).

Table: Comparison of 6 Solvers

Problem Solver Rel-Err | CPU
Ameth6Xmeth2K151 | FPC 4.8e-01 | 60.8
n=1024 spg-bp 4.3e-01 | 50.7
m=>512 Cplex-primal | 1.0e-12 | 19.8
k=150 Cplex-dual 9.7e-13 | 11.1

X = +1 Cplex-barrier | 2.7e-12 | 22.1
FPC-AS 7.3e-10 | 0.36

SSAY
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TV Regularization

Discrete total variation (TV) for an image:
TV(u) = |Djul| (sum over all pixels)

(1-norm of gradient magnitude)

¢ Advantage: able to capture sharp edges
e Rudin-Osher-Fatemi 1992, Rudin-Osher 1994
e Also useful in CS applications (e.g., MRI)

Fast TV algorithms were in dire need for many years
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FTVd: Fast TV deconvolution

; . lad _ 12
(TVL2)  min 3" (Dl + &K~ 1]

Introducing w; € R? (grayscale) and quadratic penalty:
min > (1wl + 2w — D) + L Ku — 1|12
uw I 2 ] ] 2

In theory, u() — u* as 8 — oc. In practice, 5 = 200 suffices.
Alternating Minimization:

e For fixed u, {w;} solved by 2D-shrinkage at O(N)
e For fixed {w;}, u solved by 2 FFTs at O(Nlog N)

— Extended to color (2 — 6), TVL1, and CS
(Yang-Wang-Yin-Z, 07-08) ig
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Running times (s)
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FTVd vs. Lagged Diffusivity
F+Vd: Te;t No.1 ‘ ‘ ‘ ‘ ‘ — - -
= = = LD: TestNo.1 -7
FTVd: Test No.2 _ -7
|| - - - Lb: TestNo.2| - -~~~ —__—"__A
A‘l é é 1‘0 1‘2 £4 1‘6 1‘8 2‘0
hsize
(Test 1: Lena 512 by 512; Test 2: Man 1024 by 1024)
RICE
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Color Deblurring with Impulsive Noise

Bn. RV 40% Bn. RV 50% Bn. RV 60%

W 8, t: 161s, SNR: 16dB K 4, t: 181s, SNR: 14dB K 2, t: 204s, SNR: 10dB

RICE
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Extension to CS

RecPF: Reconstruction from Partial Fourier Data

min TV(u) + AWulls + u]| Fp(u) - |2

Based on same splitting and alternating idea (Yang-Z-Yin, 08)
Matlab Code:

http://www.caam.rice.edu/~optimization/L1l/RecPF



http://www.caam.rice.edu/~optimization/L1/RecPF
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Concluding Remarks

What | have learned so far:
e CS can reduce data acquisition costs:
less data, (almost) same content

e CS poses many algorithmic challenges:
optimization algorithms for various models

o Case-by-case studies are often required:
finding and exploiting structures

e Still a long way to go from theory to practice:
but potentials and promises are real

Will CS be revolutionary?

Conclusion
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Conclusion

Compressive Sensing Resources:

http://www.dsp.ece.rice.edu/cs/

Papers and Software (FPC, FTVd and RecPF) available at:

http://www.caam.rice.edu/~optimization/L1

Thank You!


http://www.dsp.ece.rice.edu/cs/
http://www.caam.rice.edu/~optimization/L1
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Happy Lunar New Year!

Conclusion

Q}\{é
RICE

9 /79



	CS
	Theory
	Algorithms
	Conclusion

