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MRI (magnetic resonance imaging) is a widely
used medical imaging modality that creates an image
from scanned data that are essentially the Fourier
coefficients of this image. A typical abdominal scan
may take around 90 minutes. Can we reduce this
time to 30 minutes by using one third of the Fourier
coefficients, while maintaining image quality? In this
article, we hope to convince the reader that such re-
ductions are achievable through a new and promis-
ing approach called compressive sensing (or com-
pressed sensing). The main computational engine
that drives compressive sensing is !1-related mini-
mization algorithms.

1. Introduction

Exploiting sparsity is a common task in computa-
tional sciences, as it is in signal processing. Recently,
sparsity has been skillfully utilized to increase data
acquisition capacity in a new approach called com-
pressive sensing. Seminal contributions in this area
include Candés and Tao [3] and Donoho [11]. In a
nutshell, this technique encodes a sparse signal into a
shorter “code” whose length is roughly proportional
to the sparsity level rather than the length of the
signal. The decoding process, on the other hand,
involves solving an optimization problem. This is
very different from the traditional paradigm where
a full-length code is first acquired, then compressed,
and the decoding process is relatively inexpensive.
This paradigm shift can potentially bring great ben-
efits to certain applications. However, solving large-
scale optimization problems arising from compres-
sive sensing poses real challenges.

1.1 A synthetic example

Let us try to acquire a sparse signal x̄ ∈ Rn of length
n = 200 depicted in Figure 1(a). Let k = ‖x̄‖0 be
the number of nonzeros in x̄, which is 10. First, x̄
is encoded into a “compressed code” b = Rx̄ ∈ Rm,

m < n, by a linear transform R. Typically in signal
acquisition practice, such encoding is not calculated
on a computer but obtained by certain physical or
digital means. Notice that since x̄ is “unknown” at
this time, R can only be constructed independently
(non-adaptively) of x̄. In this synthetic example, we
let R ∈ Rm×n be formed from a subset of m = 80
rows of the n-dimensional discrete cosine transform
(DCT) matrix Φ. The number m is called the sam-
ple size. Φx̄ and Rx̄ are depicted in Figures 1(b) and
(c) where those in Φx̄ but not in Rx̄, i.e., the miss-
ing measurements, are replaced with zeros in (c).
After the compressed code b = Rx̄ is acquired by
a sensor and becomes available, we need to decode
it to recover the original signal. That is where op-
timization enters the picture. Although the linear
equations Rx = b have an infinite number of solu-
tions because m < n, one may use the fact that the
number of nonzeros in x̄, ‖x̄‖0, is small and try to
recover x̄ as the solution to the !0-problem:

min
x∈IRn

{‖x‖0 : Ax = b} (1)

for A = R, where the “!0-norm” of x is the num-
ber of nonzeros in x. The solution of (1) will be
x̄ unless there exists another solution to Rx = b
that is equally sparse or sparser than x̄ (which does
not happen under favorable conditions; see next sec-
tion). However, the !0-problem (1) is combinatorial
and generally NP-hard [26]. A much more tractable
alternative is the !1-problem (also called basis pur-
suit):

min
x∈IRn

{‖x‖1 : Ax = b}, (2)

which is a convex program that always has a solution
whenever Ax = b is consistent. As we will show in
Section 2, problem (2) yields the same solution as
the !0-problem under some mild conditions,

From a different perspective, this is also an exam-
ple of missing data recovery [35]. Given a portion of
data b (Figure 1(c)) that is known, one can recover
the complete data f (Figure 1(b)) by exploiting the
sparsity of x̄ representing f under a basis Φ, i.e.,
Φx̄ = f . Specifically, solving (2), for A equal to the
sub-matrix of Φ corresponding to b, gives the opti-
mal solution xopt = x̄ so that the original signal is
reconstructed as f = Φxopt (Figure 1(e)).

Ideally, we would like to take the smallest number
of measurements possible, that is, m = k̄ ≡ ‖x̄‖0.
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(a) x̄: original sparse signal, 5% nonzero
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(b) f = Φx̄: full measurements
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(c) b = Rx̄: 0-filled 40% measurements
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(d) xopt: signal recovered by (2)
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(e) Φxopt: recovered measurements
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(f) Recovery rate for m =10 to 80

Figure 1: Signal recovery from under-sampled measurement. Φ is a discrete cosine transform.

However, we must pay a price for not knowing the
locations of the nonzeros in x̄ (there are “n choose k̄”
possibilities!). It was shown in [3, 4, 30] that, when
R is a certain random matrix, then by solving (2)
for m = O(k̄ log(n/k̄)) one can recover x̄ with high
probability. Though larger than k̄, such an m can be
asymptotically much smaller than n when k̄ $ n.

To illustrate this point, we performed similar cal-
culations depicted above for m = 10, 11, . . . , 80, each
with 100 repetitions of randomly chosen m measure-
ments. The percentages of successful recovery for all
m are plotted in Figure 1(e), which shows that it
is generally safe to have m > 6‖x̄‖0 = 60 for this
combination of ‖x̄‖0, n, and A.

1.2 Hidden sparsity

If compressive sensing were only applicable to spa-
tially and temporally sparse signals, it would have
few applications. Most images, for example, are not
sparse in the pixel domain, but rather have sparse
representations in either the Fourier (spectral) or
Wavelet (spectral-scale) domain. Let the vector ū

represent such an image. A compression algorithm
(e.g. JPEG2000) would find an invertible matrix Φ
(e.g., a wavelet basis) such that the vector x̄ = Φū
has a relatively small number of large-magnitude
components. Let x̃ be the sparse vector formed by
taking only the large-magnitude components of x̄.
Then, ū can be accurately approximated by Φ−1x̃.
This is not surprising because the useful information
in most images is relatively sparse compared to pixel
values. Since Φū is sparse, one can recover ū from
b = Rū by solving

min
u
{‖Φu‖1 : Ru = b}, (3)

which is equivalent to solving (2) with x = Φu and
A = RΦ−1.

Like images, many signals by their nature are
sparse in certain domains. The principle of com-
pressive sensing is that such a signal can be recovered
from a relatively small number of measurements pro-
vided its sparsity is appropriately exploited. How-
ever, a good sparse representation for a given signal
is not always obvious. Recently, some progress has
been made on signals arising from low-light imaging,
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medical imaging (MRI and CT), infra-red sensing,
bio-sensing, radar signal processing, multi-sensor
networks and distributive sensing, and analog-to-
information conversion. The interested reader can
visit the Rice compressive sensing website [6] for a
list of recent papers.

2. When are the !0- and !1-
problems equivalent?

We give an informal proof of the fact that whenever
A is random, x̄ is sufficiently sparse and b = Ax̄,
then with high probability x̄ will solve the “basis
pursuit” problem (2). Following the proof in [34],
we will use a classic result developed by Kashin [21],
and Garnaev and Gluskin [19].

2.1 A sufficient condition for recovery

We first derive a sufficient condition for x̄ to be the
unique solution of (2) assuming that A ∈ Rm×n has
rank m and m < n. Let x̄ satisfy Ax̄ = b and denote
the null space of A by Null(A). Since

{x : Ax = b} ≡ {x̄ + v : v ∈ Null(A)},

x̄ uniquely solves (2) if and only if

‖x̄ + v‖1 > ‖x̄‖1, ∀v ∈ Null(A) \ {0}. (4)

Let S be the support of x̄ and Z be its complement,
i.e.,

S = {i : x̄i &= 0}, Z = {i : x̄i = 0},

and vS be the sub-vector of v corresponding to the
index set S (we apply similar notation for other vec-
tors). Then we calculate

‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖0 + vZ‖1
= ‖x̄‖1 + (‖vZ‖1 − ‖vS‖1) +

(‖x̄S + vS‖1 − ‖x̄S‖1 + ‖vS‖1) ,

where in the right-hand side we have added and
subtracted the terms ‖x̄‖1 and ‖vS‖1 (noting that
‖x̄‖1 = ‖x̄S‖1 given that x̄Z = 0).

In the above identity, the last term in parentheses
is nonnegative by the triangle inequality; hence, ‖x̄+
v‖1 > ‖x̄‖1 if ‖vZ‖1 > ‖vS‖1. Therefore, a sufficient

condition for x̄ to be the unique solution of (2) is
that ‖vZ‖1 > ‖vS‖1, or equivalently ‖v‖1 > 2‖vS‖1,
for all nonzero v in the null space of A. In view of
the inequality

‖vS‖1 ≤
√
|S|‖vS‖2 ≤

√
‖x̄‖0‖v‖2,

where we used the facts that (i) the length of vS is
|S| (the cardinality of the set S) which equals ‖x̄‖0,
and (ii) vS is a sub-vector of v, we derive another
sufficient condition that x̄ uniquely solves (2) if

√
‖x̄‖0 <

1
2
‖v‖1
‖v‖2

, ∀v ∈ Null(A) \ {0}. (5)

This condition requires nothing but sparsity of x̄
for it to solve (2) uniquely. This uniqueness implies
that there can exist at most one vector x̄ ∈ {x : Ax =
b} whose sparsity meets the condition (5); otherwise,
it would not be the unique solution of (2). Such an
x̄, whenever it exists, must be the sparsest solution
to Ax = b. In other words, the !1- and !0-problems
are equivalent in the sense

x̄ = arg min{‖x‖1 : Ax = b}
= arg min{‖x‖0 : Ax = b}. (6)

The remaining question is how restrictive the condi-
tion (5) is? More precisely, how big can the bound
on the right-hand side of (5) be? The answer will,
of course, depend on the properties of matrix A.

2.2 Kashin-Garnaev-Gluskin result

We will make use of a classic result established in
the late 1970’s and early 1980’s by Russian mathe-
maticians. In our context, this result has to do with
the ratio of the !1-norm to the !2-norm restricted to
a subspace. We know that in the entire space IRn,
the ratio can vary from 1 to

√
n, namely,

1 ≤ ‖v‖1
‖v‖2

≤
√

n, ∀v ∈ IRn \ {0}.

Here we will only concern ourselves with the lower
bound. Roughly, this ratio is small for sparse vectors
that have many zero or near-zero elements. However,
it turns out that in many subspaces this ratio can
have much larger lower bounds than 1.

As an improvement to an earlier result by Kashin
[21], Garnaev and Gluskin [19] established that for
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any natural number p < n, there exist p-dimensional
subspaces Vp ⊂ IRn in which

‖v‖1
‖v‖2

≥ C
√

n− p√
log(n/(n− p))

,∀v ∈ Vp \ {0}, (7)

where C is an absolute constant independent of the
dimensions. In other words, these subspaces do not
contain excessively sparse vectors. Moreover, such
subspaces are abundant because every p-dimensional
subspace spanned by iid (independently identically
distributed) random vectors of the standard Gaus-
sian distribution will satisfy inequality (7) with high
probability. (This is an instance of a mathematical
phenomenon commonly referred to as concentration
of measure; see [25], for example.)

2.3 How sparse is enough?

If A is an m by n random matrix with iid standard-
Gaussian entries, then it is known that the null space
of A can be spanned by iid random vectors. In par-
ticular, vectors in the null space of A will satisfy,
with high probability, the Garnaev and Gluskin in-
equality (7) for Vp = Null(A) and p = n−m. Com-
bining the sufficient condition (5) with the Garnaev
and Gluskin inequality (7), we have the result that
for a random Gaussian matrix A, x̄ will uniquely
solve (2) with high probability whenever

‖x̄‖0 <
C2

4
m

log(n/m)
. (8)

(The constant C above is the same one from (7)).
This result can be interpreted as follows. As long
as the sparsity of a signal x̄ is less than a certain
fraction of the number of random measurements m,
where the value of the fraction only logarithmically
deteriorates as the signal dimension n increases, with
high probability this signal can be recovered from the
random measurements by solving the basis-pursuit
problem (2).

The sparsity bound given in (8) is the best order
currently available, first established in [3] for Gaus-
sian random matrices, which is a significant improve-
ment upon previously existing bounds. The same
order has been extended to some other random ma-
trices such as Bernoulli matrices whose entries are
±1 [4]. For certain partial orthonormal (for exam-
ple, partial DCT) matrices, a slightly weaker bound

has been proved [30]. Moreover, an in-depth study
on the constant in (8), C2/4, can be found in [12].

3. Imaging and other applications

To demonstrate the potential benefit of compres-
sive sensing in practical applications, let us simulate
a compressed MRI (Magnetic Resonance Imaging)
experiment using under-sampled measurements (see
[24] for a more realistic work).

3.1 Compressed MRI simulation

First, we need an abridged overview of MRI — a
non-invasive and safe medical imaging technique. In
MRI, images are obtained in the form of the fre-
quency response of tissues. First, a strong magnetic
field and an RF (radio frequency) pulse are directed
to a section of the anatomy, causing the protons in
that area to be “excited”: they get aligned along the
magnetic direction and spin with a certain frequency.
Next, on turning off the RF pulse, the protons return
to their natural, rather chaotic, state while releasing
RF signals that are captured by external coils in the
form of phases and magnitudes at selected frequen-
cies. In other words, the image of spatial energy
(or density), denoted by ū, is constructed from data
acquired in the frequency domain, the so-called k–
space. Roughly, at a given resolution, a complete set
of sampled frequencies is f = F ū where F is a dis-
crete Fourier transform. Therefore, an image can be
constructed through a Fourier inversion ū = F−1f .

An MRI scan can be a long and uncomfortable
process. For example, a patient must repeatedly
hold his/her breath during an abdominal scan while
strictly immobilized throughout the process, which
can last 1 to 2 hours. Potentially, compressive sens-
ing can help construct ū with a much smaller num-
ber of sample frequencies. This would mean that the
MRI scan duration could be significantly reduced.

MR images often have sparse representations
under some wavelet transform Φ. By solving
minu{‖Φu‖1 : Ru = b} or its variants, we can obtain
a given image ū from an under-sampled frequency
set b = Rū, where R represents a partial discrete
Fourier transform.

Let us simulate this approach to see how much
compressive sensing could help. Figure 2(a) depicts



Volume 19 Number 1 March 2008 15

(a) full sampling (b) 39% sampling,
SNR=32.2

(c) 22% sampling,
SNR=21.4

(d) 14% sampling,
SNR=15.8

Figure 2: (a) Original Image; (b)-(d) Pelvis MR im-
ages recovered from incomplete measurements us-
ing the wavelet-based model (9) (where the higher
the SNR (signal-noise ratio) is, the better the image
quality is).

a clean 256×256 pelvis MR image that is our ū. We
tried the use of 39%, 22%, and 14% of its Fourier co-
efficients to reconstruct the image, simulating three
different levels of under-sampling. Since in MR
imaging, one has some freedom in selecting sample
frequencies (however, practical constraints do exist),
the reconstruction results were obtained by random
sampling with a strong bias towards lower frequen-
cies. The images in Figure 2(b)–(d) were obtained
by solving the model

min
u
‖Φu‖1 +

µ

2
‖Ru− b‖2, (9)

with a Haar-wavelet transform Φ and a large µ.
From a visual examination, it seems that using one
third of measurements, if properly chosen, would be
quite sufficient for obtaining a high-quality image for
this case.

(a) Shepp-Logan phantom (b) 22 radial lines

Figure 3: Fourier samples taken at the frequencies on
the 22 radial lines (b) are sufficient to exactly recover
Shepp-Logan phantom (a) using total variation.

3.2 Total variation

Many natural images possess a “blocky” structure.
For such images, minimizing the total variation (cf.
[36]) yields a better image quality [31]. For a 2D
digital image u, the total variation of u, TV (u), is
defined as the sum of Euclidean norms of local fi-
nite differences, i.e., TV (u) ≡

∑
i,j ‖(Du)ij‖2, where

(Du)ij represents a first-order finite difference vec-
tor of u at pixel (i, j). Since TV (u) is the !1-norm
of “gradient magnitude”, minimizing TV (u) tends to
yield a solution with sparse finite differences, namely
an image with constant-intensity blocks. Therefore,
total-variation regularization has been widely used
in image processing tasks such as noise removal, de-
blurring, edge detection, etc.. A similar argument
can be used to justify the use of higher-order finite
differences to regularize images of appropriate char-
acteristics.

In [2], Candés and Romberg demonstrated that,
by minimizing the total-variation, the Shepp-Logan
phantom in Figure 3(a) can be almost exactly recov-
ered from Fourier samples taken on 22 radial lines
depicted in Figure 3(b).

Since finite difference operators are not invertible,
minimizing total variation cannot be directly trans-
formed into a problem of the form (2). This poses a
major algorithmic challenge.

3.3 Broad applications

There are other potential applications of compres-
sive sensing besides MRI, especially in areas where
signal acquisitions are relatively expensive and time-
consuming. For example, an infrared sensor is over a
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hundred times more expensive than an image sensor
of the same resolution in a consumer digital cam-
era. In a CT (computed tomography) scan, a series
of two-dimensional X-rays are used to construct a
three-dimensional image, but a long exposure to the
radiation from X-rays can be dangerous. In wireless
sensor networks for collecting physical or environ-
mental measurements, a large number of spatially
distributed sensors acquire and transmit a deluge of
data, relying on low capacity batteries. In all of
these examples, physical hardware capacities are be-
ing stressed, and improving their sensing resolution
or speed is expensive. Compressive sensing offers an
invaluable alternative to expensive physical improve-
ments by using much cheaper computing power after
data collection. Some recent explorations and appli-
cations of compressive sensing can be found at the
Rice compressive sensing website [6].

4. Algorithms

Let us turn to optimization, the ultimate tool for ob-
taining a sparse signal (or its sparse representation)
from under-sampled measurements.

4.1 Formulations and challenges

Let J(x) be a convex, sparsity-promoting function,
such as the !1-norm or the total variation. To recover
a sparse signal representation x̄ from measurements
b ≈ Ax̄, we can either solve

min
x
{J(x) : Ax = b}, (10)

when b is relatively accurate, or solve

min
x
{J(x) : H(Ax, b) ≤ ε} (11)

when b is more noisy, where H is a measure of the
closeness of Ax to b. For an appropriate penalty pa-
rameter µ (which can be found by a noise-statistics
computation, cross validation, or simply trial and
error), (11) is equivalent to

min
x

J(x) + µH(Ax, b) (12)

for some µ > 0. The most common choices of J and
H are, respectively, J(x) = ‖x‖1 and H(Ax, b) =
1
2‖Ax − b‖22. In Statistics, minimizing this H sub-
ject to ‖x‖1 ≤ δ is the so-called LASSO problem.

More generally, the regularization term J(x) can be
a mixture of multiple terms representing multiple
features of a sparse solution. For example, a signal
may possess a piece-wise constant feature and have
a sparse representation under a certain transform Φ
at the same time. In this case, we may use a mixed
regularization term:

J(x) = TV (u) + λ‖Φx‖1.

Similarly, the fidelity-measure function H(x) could
also consist of multiple terms.

All these problems are non-smooth convex opti-
mization problems that can be easily transformed
into smooth problems with convex constraints. How-
ever, algorithmic challenges arise from the facts that
(i) real-world application problems are invariably
large-scale (an image of 1024× 1024 resolution leads
to over a million variables); (ii) the data matrices in-
volved are generally dense; and (iii) real-time or near
real-time processing is often required (as in MRI).
For these problems, conventional algorithms requir-
ing matrix factorizations are generally not effective
or even applicable.

On the other hand, when A is a partial trans-
form matrix, fast matrix-vector multiplications are
often available. Moreover, the sparsity in solutions
presents unusual opportunities to achieve relatively
fast convergence with first-order methods. These
features make the development of efficient optimiza-
tion algorithms for compressive sensing applications
an interesting research area.

4.2 Some recent algorithms

We mention a few algorithms recently developed
for solving large-scale compressive sensing problems,
fully realizing that any such list would be unavoid-
ably incomplete. In addition to those briefly re-
viewed below, there are many other algorithms based
upon ideas such as minimizing a non-convex !p-
“quasi-norm” for p < 1, iteratively weighted least
squares, group testing, homotopy methods in statis-
tics, combinatorial methods, and !1-Bregman iter-
ations. We again refer the reader to the Rice CS
resource website [6] for more comprehensive lists of
algorithmic papers and software.

Orthogonal Matching Pursuit (OMP) based meth-
ods (e.g., [32, 13, 7]) do not solve (2) per se, but use
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an iterative greedy approach to identify nonzero (or
large-magnitude) components of x so that the resid-
ual b−Ax is minimized in some sense while keeping
other components of x at zero. The recent algorithm
StOMP [13] is a good representative of such greedy
algorithms that can perform well on problems with
highly sparse solutions and noiseless measurements.

A recent code called !1 !s [22] is based on an
interior-point algorithm that uses a preconditioned
conjugate gradient (PCG) method to approximately
solve linear systems in a truncated-Newton frame-
work. The authors exploit the structure of the Hes-
sian to construct their preconditioner. Their com-
putational results show that about a hundred PCG
steps are sufficient for obtaining accurate MRI im-
ages in the compressive sensing framework. Though
generally slower than first-order methods, this algo-
rithm may offer a certain advantage on problems of
less sparsity where first-order methods could poten-
tially encounter slow convergence.

The recent method GPSR [18], which stands for
gradient projection for sparse reconstruction, refor-
mulates the unconstrained version (12) of (2) into
a quadratic program with nonnegativity constraints
and applies a projected gradient algorithm, with op-
tional Barzilai-Borwein steps and a non-monotone
line search. Although motivated from very different
viewpoints, this algorithm has a certain similarity
with shrinkage methods introduced below; however,
their performance can be quite different on some
problems.

SPGL1 [33] is a recent code for solving a sequence
of problems of the form

min
x
‖Ax− b‖, s.t. ‖x‖1 ≤ λ, (13)

for λ = λ1, λ2, . . . , λj = λ̄ until reaching the desired
value λ̄. The choice of λ is based on a root finding
algorithm (e.g., Newton’s method) using two results:
(i) the curve formed by the minimizers xopt(λ) is
convex and continuously differentiable in λ, (ii) the
dual solution of (13) gives the gradient of the curve
at λ.

Recently, a general method was proposed in [27]
for minimizing J(x)+H(x), where J is non-smooth,
H is smooth, and both are convex. It is required
that J be “simple” so that there exists a closed-form
solution to minimizing J plus some auxiliary func-
tions. The !1-norm is such a “simple” function since

the problem minx λ‖x‖1 + 1
2‖x− y‖22 has the closed-

form solution shrink(y, λ), which is defined in (16)
below. When H has Lipschitz continuous gradients,
the objective value in this method converges at a
rate O(k−2), where k is the iteration number. This
result shows that in general, minimizing the sum of
J and H is not harder than minimizing the smooth
function H alone as long as J is “simple”.

A widely used method for solving !1-minimization
problems of the form

min
u

µ‖u‖1 + H(u), (14)

for a convex and differentiable H, is an iterative pro-
cedure based on shrinkage (also called soft threshold-
ing; see (16) below). In the context of solving (14)
with a quadratic H, this method was independently
proposed and analyzed in [17, 28, 10, 1], and then
further studied or extended in [14, 15, 9, 5, 20, 8]. It
turns out that this algorithm can be directly derived
from the classic forward-backward operator splitting
technique (c.f. [23]). The basic shrinkage algo-
rithm can be written as the fixed-point iteration: for
i = 1, . . . , n,

uk+1
i = shrink((uk − τ∇H(uk))i, µτ), (15)

where τ > 0 serves as a step-length for gradient de-
scent (which may vary with k) and

shrink(t, α) = t− Proj[−α,α](t) (16)

for any t ∈ R and α > 0. It is easy to see that the
larger µ is, the larger the allowable distance between
uk+1 and uk.

A new result in [20] is the finite convergence of the
support and the signs of uk under a non-degeneracy
condition. That is, sign(uk) ≡ sign(uopt) (assum-
ing sign(0) = 0) for all k ≥ K, where uopt denotes
the solution of (14) (however, an estimate or bound
for K is still unknown). It was also proved in [20]
that the rate of convergence is q-linear under suit-
able conditions on τ and H, and the rate depends
on the condition of a sub-Hessian, rather than the
entire Hessian, of H at uopt. These results provide
explanations why sparsity in solutions can help ac-
celerate convergence of first-order methods.

Various modifications and enhancements have
been proposed to improve the efficiency of the ba-
sic iteration (15), including [16, 18]. In our view, the
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basic iteration (15) would not be practically effective
without a continuation (or path-following) strategy
[20, 33] in which a gradually decreasing sequence of
µ-values is used to guide the iterates towards the fi-
nal optimal solution. In [20], the performance of a
fixed-point continuation (FPC) algorithm was com-
pared with those of StOMP [13], GPSR [18] and !1 !s

[22].
In addition, a general block-coordinate gradient

descent method for linearly constrained separable
problems [29] can be applied to solving (14).

5. Concluding remarks

Compressive sensing is a new, application-driven, in-
terdisciplinary area where optimization can have a
great impact. Given the diversity of applications,
successful algorithms should be able to take full ad-
vantage of problem structure. We have just seen the
beginning of activities in this direction.

Taking advantage of sparsity has always been one
of the central tasks in computational algorithms.
However, it is fair to say that most previous efforts
have been concentrated on sparsity in problem data
rather than sparsity in solutions. How to optimally
exploit solution sparsity certainly deserves closer ex-
aminations in algorithmic studies.

Noise and errors naturally appear in measure-
ments in practical applications. A good algorithm
for compressive sensing should be robust with re-
spect to noise and errors under normal conditions.
Comprehensive and in-depth research in this direc-
tion has yet to be conducted.

Unlike for most other problems, algorithm design-
ers for compressive sensing have some freedom in
selecting problem data. For example, which mea-
surement matrix should we use for a given problem,
a random Gaussian or a partial DCT matrix? Which
frequencies should we sample in MRI? This interac-
tion between problem data, sparse solution and al-
gorithms presents a rich and unique set of research
opportunities. Moreover, if data are acquired over
a period of time, can we develop a “warm-start” al-
gorithm that produces approximate solutions whose
accuracy progressively improves with the increase in
available measurements?

The past few years have seen a burst of activities
using !1-related optimization in areas such as statis-

tics, machine learning, signal processing, imaging,
and computer vision. While the gradient-descent
method is probably the most well-known and widely
used tool, researchers in these areas have devel-
oped rich analytical results and efficient computa-
tional tools for solving various !1-related optimiza-
tion problems. Historically, research in optimization
has been stimulated by the demand of engineering
applications, and subsequently contributed to the
practice of these applications. We believe that to-
day we are witnessing the same phenomenon repeat-
ing itself in the area of !1-related optimization.
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