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Abstract

In intensity-modulated radiation therapy (IMRT) for cancer treatment, the
most commonly used metric for treatment prescriptions and evaluations is the
so-called dose volume constraint (DVC). These DVCs induce much needed flex-
ibility but also non-convexity into the fluence optimization problem, which is
an important step in the IMRT treatment planning. Currently, the models of
choice for fluence optimization in clinical practice are weighted least-squares
models. When DVCs are directly incorporated into the objective functions
of least-squares models, these objective functions become not only non-convex
but also non-differentiable. This non-differentiability makes it problematic that
software packages designed for minimizing smooth functions are routinely ap-
plied to these non-smooth models in commercial IMRT planning systems. In
this paper, we formulate and study a new least-squares model that allows a
monotone and differentiable objective function. We devise a greedy approach
for approximately solving the resulting optimization problem. We report nu-
merical results on several clinical cases showing that, compared to a widely
used existing model, the new approach is capable of generating clinically rele-
vant plans at a much faster speed, with speedups above one-order of magnitude
for some large-scale problems.
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1 Introduction

We will only give a very brief introduction to a particular problem, the fluence opti-

mization problem, in intensity-modulated radiation therapy (IMRT). For more com-

prehensive information on this topic, we refer interested readers to articles collected

in two recent books [16, 13]. Survey papers on optimization models and methods in

this area include [18, 4], and a historical perspective can be found in [2].

2



1.1 IMRT Fluence Optimization

In the usual practice of IMRT, a linear accelerator rotates on a gantry around the

patient, emitting “modulated” beams of X-rays from a number of pre-fixed angles,

where modulation mechanism is achieved by a multi-leaf collimator (MLC) attached

to the head of the linear accelerator (see Figure 1). The MLC shapes the pattern

of outgoing radiation beam, through a sequence of movements of its metal leaves, in

order to precisely target the tumors while minimizing exposure of the neighboring

healthy structures.

Figure 1: Linear Accelerator (left) and Multi-leaf Collimator (right)

Three major optimization problems arise in the IMRT planning process. The first

is the beam-angle optimization problem which is to determine the “optimal” number

and values of gantry angles, which is often formulated as a combinatorial optimization

problem. The second is called fluence (map) optimization problem which is to find a

set of “optimal” intensity profiles corresponding to the given set of beam angles. The

third is the leaf sequencing problem which is to determine an “optimal” sequence of

MLC leaf movements that delivers the intensity profile for each beam angle. In this

paper, however, we will exclusively concentrate on the second problem – the fluence

optimization problem.

Specifically, we need to determine how intense the X-ray beam should be at each

point (x, y) on the MLC aperture surface for all gantry angles. These beam intensity

profiles, or fluence maps, are represented by two-dimensional, nonnegative functions

Ia(x, y) for a = 1, 2, · · · , k, where k is the number of gantry angles in use. See

Figure 2 where five beam angles are in use, each with its own beam intensity profile.

The purpose of fluence optimization is to find the functions Ia(x, y) such that the

tumor (or target) structures receive the prescribed doses and the healthy structures
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receive as little as possible. These goals are fundamentally conflicting and have ill-

defined evaluation criteria, making fluence optimization a difficult problem from a

modeling viewpoint.

Figure 2: A five-beam treatment scheme

In practice, each fluence map function Ia(x, y) is discretized at a rectangular grid

on the MLC surface and approximated by a set of discrete values {Ia(xi, yj)}. The

actual number of these small rectangular elements, or “beamlets,” will vary from case

to case. For notational convenience, let us collect the unknown beamlet intensity

values {Ia(xi, yj)}, a = 1, 2, · · · , k, for all beam angles into a single vector x of n

ordered elements, where n is the total number of beamlets for all beam angles. Hence,

the task of fluence optimization is to find a beamlet intensity vector x that produces a

dose distribution as close as possible to a prescribed dose distribution. In the IMRT

literature, this process is called inverse planning, which naturally leads to the issue

of how a dose distribution is calculated or prescribed.

1.2 Dose Calculation and Dose-Volume Constraints

In practice, one also needs to discretize the “region of treatment” — the three-

dimensional volume of the patient’s anatomy containing the target structures and

any nearby critical structures that might be adversely affected by the radiation. This

volume is discretized into small three-dimensional rectangular elements known as

“voxels.” During the treatment, each voxel will absorb a dose of radiation. We de-

note the dose values absorbed by the voxels by a vector d ∈ Rm, where m is the total

number of voxels in the region of treatment.
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The standard IMRT model for calculating dose absorbed at the i-th voxel in the

region of treatment is the linear model d = Ax, or

di =
n∑

j=1

aijxj, i = 1, 2, · · · , m, (1)

where aij represents the amount of dose absorbed by the i-th voxel per unit intensity

emission from the j-th beamlet. The collection of values aij for all the voxels and

beamlets forms a matrix A ∈ Rm×n, known as the (dose) “influence matrix” (or kernel

matrix).

The linear dose model d = Ax can be considered as a first-order approximation.

Radiation absorption as a function of radiation intensities can be modeled with Boltz-

mann transport equations [9], which are difficult to solve. Different approximation

methods have been proposed for computing the matrix A. Monte Carlo sampling

techniques are, for example, among the more popular methods because of their accu-

racy, but they are also very slow and expensive. Many other less expensive, and less

accurate, dose calculation engines exist. Currently, dose calculation is still considered

an important research area in its own right. While acknowledging its importance,

we will assume in this paper that a constant influence matrix A is provided to us

a priori, and we will use it throughout our optimization process. Without loss of

generality, we also assume A has no zero rows or columns. This means, respectively,

that all voxels receive some nonzero amount of radiation and every beamlet influences

at least one voxel’s dose. These conditions can be easily met by pre-processing, if

necessary. Typically, m � n with m on the order of 105 or larger and n of 103 up

to 104. Note the entries aij are necessarily nonnegative. Depending on how much

scattering is included, the influence matrix A can be very sparse or fairly dense.

Since it is generally impossible to avoid collateral damage in radiation treatment

despite using multiple angles in an attempt to focus radiation on the targets, on-

cologists utilize so-called dose-volume constraints (DVCs) to prescribe and evaluate

treatment plans. A typical DVC specifies a certain percentage of the volume in a

structure that is allowed to be overdosed. For example, a prescription for a lung

cancer case may contain the dose-volume constraint for the healthy right lung that

reads

“no more than 30% volume of the right lung should receive 20 Gy or higher,”

where “Gy” is the shorthand for “Gray” – the international unit for radiation dose

absorption. In addition, oncologists may specify another level of constraint on the

same organ, such as “no more than 40% volume of the right lung should receive 10

Gy or higher.” These DVCs try to control the amount of collateral damage to the
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right lung during the treatment so that it can still function adequately and eventu-

ally recover after the treatment. Although other metrics have been proposed, the

metrics based on dose-volume constraints has become the de facto standard metric

to prescribe and evaluate radiation treatment plans in clinical practice.

Clearly, DVCs provide much-needed flexibility for the escalation of tumor doses.

On the other hand, they also introduce a high degree of complexity to the planning

process. In the above example, for instance, which 30% of the right lung volume

should be allowed to absorb more than 20 Gy? This brings a combinatorial compo-

nent to the problem (once it is discretized). Mathematically, finding an exact global

optimum for such a problem can be extremely difficult.

1.3 A perspective on Least-Squares Models

Several classes of models have been proposed and studied for fluence optimization;

however, in this paper we are only concerned with a particular class – weighted least-

squares models. In particular, we will briefly introduce dose-volume based least-

squares models and and point out what we see as the main advantage and disadvan-

tage of these models.

Least-squares models were the first practical models used in inverse planning [19,

3]. Today they continue to be the models of choice in clinical practice, implemented

in most commercial IMRT planning systems on the market. In our view, the main

advantage of these models is their “speed”; that is, they can be approximately solved

relatively quickly.

It is perhaps widely-agreeable that there are two major sources of difficulties in

developing models for fluence optimization:

1. Multi-objectiveness: The problem is inherently multi-objective due to the pres-

ence of conflicting goals for multiple structures. The conflicts are not only

between tumors and critical organs, but also between different structures of

the same kind. As is well known, despite years of research, multi-objective

optimization remains one of the most difficult problems.

2. Vagueness of clinical objectives [8]: In many cases, there is hardly consensus

among radiation oncologists on a set of definitive criteria that can be used to

rank the quality of different treatment plans. This is partly because of the above

multi-objectiveness, and partly because of the lack of quantitative metrics to

measure biological responses of tissues to irradiation (which may vary from one

individual patient to another).
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Due to these fundamental difficulties, to a large extent the IMRT planning process

has been human-dependent and experience-driven, relying heavily on repeated trial-

and-error and close interactions between treatment planners and oncologists. More

often than not, the experiences of involved oncologists play a decisive role in accepting

or rejecting a given treatment plan.

Under such an environment, plus additional resource considerations, a fast turn-

around time for trial-and-error becomes a great advantage. This speed advantage

is enjoyed by weighted least-squares models more than other models such as integer

programming models (for example, see [10, 17]), which are more mathematically rig-

orous but more expensive to solve. In the meantime, weighted least-squares models

are generally capable of producing clinically relevant treatment plans (even though

they have less control over constraint satisfaction than models imposing explicit con-

straints). These attributes lead to the popularity of least-squares models in clinical

practice.

In a weighted least-squares model, the difficulties of the multi-objectiveness and

the vagueness of clinical objectives are addressed by adjusting a set of importance

weights in a trial-and-error process. In this approach, a positive weight is attached to

each anatomical structure, representing the relative priority of fitting the calculated

dose to the prescribed one for that structure. Suppose there are N structures each

consisting of a set of voxels. Then the objective function in a weighted least-squares

model takes the form

f(x) =
N∑

j=1

wjfj(d(x)), (2)

where d(x) = Ax is the calculated dose vector corresponding to a given influence

matrix A and a beamlet intensity vector x, wj is the weight for the j-th structure,

and fj(d) is a piecewise quadratic function that penalizes the misfit of the calculated

dose d(x) to the prescribed one for the j-th structure. For any fixed set of weights,

f(x) can be approximately minimized by one of the existing algorithms for continuous

optimization subject to nonnegativity of the beamlet intensities.

Each penalty function fj(d(x)) in (2) is a sum of quadratic penalty terms, one for

each voxel. If the prescription at the i-th voxel is either

di(x) = bi or di(x) ≤ bi,

where di(x) is the calculated dose value at the i-th voxel and bi is the prescribed one,

then the corresponding penalty term is, respectively, either

(di(x)− bi)
2 or max(0, di(x)− bi)

2.
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In either case, this term is convex and differentiable. Therefore, without DVCs the

function f(x) in (2) is convex and differentiable, and the resulting optimization prob-

lem is simple at least from a theoretical point of view.

However, the addition of DVCs makes the matter more complicated. Consider the

DVC that no more than 10% of the volume should receive a dose 20 Gy or higher. In

this case, the standard approach is to penalize only those voxels where the calculated

dose values, evaluated at the current beamlet intensity x, are higher than 20 Gy but

not high enough to be ranked in the top 10%. In other words, voxels with the highest

10% dose values are not penalized.

The benefit of more flexibility provided by DVCs comes at a price. That is,

the resulting penalty function f(x) becomes non-convex and non-differentiable. To

illustrate this point, consider a hypothetic 2-voxel structure with the DVC that no

more than 50% of the volume (i.e. 1 voxel) should receive a dose 5 Gy or higher. In

this case, the corresponding penalty function is

f(d1, d2) =

{
max(0, d1 − 5)2, d1 < d2,

max(0, d2 − 5)2, d1 ≥ d2,

where either none or one of the two voxels is penalized, but never both. A plot of this

function will clearly show that it is indeed non-convex and non-differentiable along

the line d1 = d2 (starting from the point (5, 5)).

Given the combinatorial nature of DVCs, the non-convexity is perhaps unavoid-

able. However, is it possible to avoid the non-differentiability? It is troublesome that

optimization algorithms designed for differentiable functions are being routinely used

in daily clinical practice to minimize non-differentiable functions. Our own experi-

ments indicate that this non-differentiability may be responsible for many failed trials

in the trial-and-error process of planning.

1.4 Notation and Organization

Let n be the total number of relevant beamlets and m the total number of voxels in

the treatment region. We define the n-dimensional non-negative orthant as Rn
+ :=

{x ∈ Rn : x ≥ 0}, and similarly for Rm×n
+ . Let A ∈ Rm×n

+ be a given influence matrix.

Let mt be the number of target voxels. We collect the mt rows of A corresponding

to the target voxels to form a submatrix At ∈ Rmt×n of A. Thus, for any beamlet

intensity vector x ∈ Rn
+, the vector Atx gives the dose values in the target voxels.

Accordingly, the prescribed target dose values are collected in a vector bt ∈ Rmt
+ .

Recall that vector inequalities are always treated component-wise.

Let Dv ⊂ Rm
+ be the set of dose vectors that satisfy all the dose-volume constraints

for a given problem. We note that there may be many targets and critical organs
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with (possibly multi-level) DVCs, but vectors in Dv satisfy all such requirements.

This paper is organized as follows. In Section 2, we describe and study a new

least-squares model, which was first introduced by the authors in [20]. A greedy

algorithm is developed and studied for this model in Section 3. Numerical results

on eight clinical cased are presented in Section 4. Finally, we conclude the paper in

Section 5.

2 A Least-Squares Model with Differentiability

Since the fundamental difficulties of the multi-objectiveness and vagueness of clinical

objectives will persist at least for the foreseeable future, the dominance of weighted

least-squares models in clinical practice will most likely continue as well. The purpose

of this paper is to improve this state of affairs. Specifically, we carry out an in-

depth theoretical and numerical study on a new least-squares model that allows a

differentiable objective function and faster numerical optimization.

We mention that fast fluence optimization is also essential for beam-angle opti-

mization, which is still considered unsolved [2], since the latter needs to use the former

as a necessary subroutine to be solved repeatedly.

2.1 Geometric Considerations

To motivate our approach, we discuss the geometry of the dose-volume constraint set

in the IMRT fluence optimization problem. Fundamentally, our goal is to sufficiently

dose the targets while satisfying the dose-volume constraints (DVCs) as closely as

possible.

Suppose we have a vector u ∈ Dv satisfying the dose-volume constraints. Then

to find beamlet intensities x ∈ Rn
+ whose resulting doses satisfy the dose-volume

constraints, we must have Ax ≤ u. (For this reason, we will loosely refer to the u

values as “bounds” throughout.) Moreover, we wish to meet the target prescription

Atx = bt. Equivalently, we would like to find a beamlet intensity vector x ∈ Rn
+ that

satisfies

Atx = bt, Ax + s = u,

for some auxiliary (slack) variable s ∈ Rm
+ .

We define the prescription set

H =

{[
bt

u

]
: u ∈ Dv

}
⊂ Rmt+m

+ , (3)
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to contain doses that meet the fixed prescription bt and satisfy the DVCs. Since bt

is fixed in the definition (3), H consists of Dv embedded in the higher dimensional

subspace. Furthermore, we define the (augmented) physical set

K =

{[
Atx

Ax + s

]
: x, s ≥ 0

}
⊂ Rmt+m

+ . (4)

to contain the doses that can be realized physically (up to dose calculation and de-

livery errors). The word “augmented” refers to the addition of the slack variable to

the last m components.

It should be clear that K is a closed convex cone and H is non-convex since the

set Dv, defined by DVCs of a combinatorial nature, is a non-convex set.

2.2 Problem Formulation

To treat the targets and yet make the most of our sacrifice in the critical structures,

we would ideally like to find x ∈ Rn
+ and s ∈ Rm

+ such that both Atx = bt and

Ax + s = u, but most likely this is impossible. The reality of the IMRT fluence

problem is that there may be no physically-achievable dose that both satisfies the

DVCs and meets the prescription. That is, generally speaking dist(H,K) > 0, or

equivalently H ∩ K = ∅. Thus, we are motivated to determine dH ∈ H and dK ∈ K
such that

dist(H,K) = ‖dH − dK‖ = min
u∈Dv

min
x,s≥0

∥∥∥∥[bt

u

]
−
[

Atx

Ax + s

]∥∥∥∥ , (5)

where the distance is in the Euclidean norm. However, it is more convenient to replace

the norm in the right-hand side of (5) with the quadratic function

q(x, s, u) =
1

2
‖Atx− bt‖2 +

1

2
‖Ax + s− u‖2 . (6)

Thus, we define our objective function over the set of all u ∈ Dv to be

f(u) = min
(x,s)≥0

q(x, s, u). (7)

Namely, f(u) is itself the optimal value of a linear least-squares problem with a

nonnegativity constraint. Using this notation, we re-pose the problem (5) with the

equivalent formulation

min
u∈Dv

f(u). (8)

If we can solve this problem, then we will have found a u∗ ∈ Dv and associated

beamlet intensities x∗ ∈ Rn
+ such that the “deliverable” dose distribution Ax∗ is as
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close as possible to being feasible with respect to the dose-volume constraints and to

meeting the prescribed dose bt in the targets.

It should be emphasized that for any given prescription (bt, u
0), where bt is a

prescribed target dose and u0 ∈ Dv, the model

min
x≥0

q(x, s, u0)

is nothing but a regular least-squares model without dose-volume constraints. There-

fore, if we start from u = u0 and monotonically decrease f(u), then we should obtain

a better solution (in terms of stronger target fit while having a similar degree of

DVC compliance) than the regular least-squares solution. This clearly illustrates the

benefit of using dose-volume-based models.

Since it is practically desirable to allow weightings in our least-squares formulation,

in place of q(x, s, u) we can easily consider

qW (x, s, u) :=
1

2
‖Wt(Atx− bt)‖2 +

1

2
‖W (Ax + s− u)‖2 , (9)

where Wt and W are diagonal weighting matrices of appropriate sizes that hold the

importance weights for each structure. The weights can, for instance, incorporate

scaling factors such as the number of voxels for each structure.

Without loss of generality, we will always assume that the weighting matrices

have already been absorbed into the quantities A, At, bt and Dv, i.e., A ← WA,

At ← WtAt, bt ← Wtbt, ..., etc. For this reason, from now on we will not explicitly

mention weighting unless necessary.

2.3 Optimality of the Subproblem

Our objective f is itself the minimum value of another optimization problem, making

it somewhat complicated. In this section, we examine the properties of f on the

domain Dv with a mind toward constructing an algorithm for solving our overall

problem (8). We make the following assumption in all our theoretical results.

Assumption 1. The matrix At is full column rank.

In our experience, this assumption almost always holds and certainly does in all

of our experiments. This is so partly because usually the number of target voxels far

exceeds that of beamlets, hence At has far more rows than columns. Our theoretical

work depends on uniqueness properties that follow from this assumption. In partic-

ular, we will use this assumption to prove the subproblem solutions are unique and

continuously differentiable functions of u.
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Evaluating f(u) requires solving a subproblem parameterized by u ∈ Dv which we

will denote Q(u):

min
(x,s)≥0

q(x, s, u) (10)

Subproblem Q(u) is a convex bound-constrained quadratic program that we will need

to solve repeatedly, so let us examine it in more detail.

Proposition 1. Under Assumption 1, the subproblem objective function q(·, ·, u) is

a strongly convex quadratic function for every u ∈ Rm. Hence, f is well-defined and

f(u) = q(x(u), s(u), u), (11)

where (x(u), s(u)) is the unique solution pair of Q(u).

Assumption 1 implies this strong convexity property since the matrix AT
t At is the

Schur complement of the Hessian of q(x, s, u) with respect to (x, s). Thus, it follows

from well-known facts of convex optimization that Q(u) has a unique solution pair

(x(u), s(u)) for any u. Proposition 1 guarantees the existence and uniqueness of x(u)

and s(u) for every u, i.e. they are well-defined functions of u themselves.

It is obvious that the Karush-Kuhn-Tucker (KKT) conditions for problem Q(u)

are necessary and sufficient for optimality. Note that for two vectors v and w of

the same dimension, the component-wise minimum min(v, w) = 0 is equivalent to

v ◦ w = 0 and v, w ≥ 0. Using this notation, we can write the KKT conditions for

Q(u) as

min (x,∇xq(x, s, u)) = 0, (12a)

min (s,∇sq(x, s, u)) = 0, (12b)

where

∇xq(x, s, u) = AT
t (Atx− bt) + AT (Ax + s− u), (13a)

∇sq(x, s, u) = Ax + s− u. (13b)

Therefore, (x(u), s(u)) is the solution to Q(u) if and only if x(u) and s(u) satisfy

the KKT conditions (12a) and (12b), respectively. In addition, we say that strict

complementarity holds for Q(u) at (x, s) if

x +∇xq(x, s, u) > 0, (14a)

s +∇sq(x, s, u) > 0. (14b)
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Lemma 1. For any u,

s(u) = max(0, u− Ax(u)), (15a)

∇sq(x(u), s(u), u) = max(Ax(u)− u, 0), (15b)

where the maximum is taken component-wise.

Proof. Substituting (13b) into (12b), we have min (s(u), Ax(u) + s(u)− u) = 0.

If [Ax(u)]i < ui, then necessarily [s(u)]i > [Ax(u) + s(u) − u]i ≥ 0. Complemen-

tarity then implies that in fact [Ax(u)+s(u)−u]i = 0 and thus [s(u)]i = [u−Ax(u)]i.

Otherwise, [Ax(u)]i ≥ ui implies [Ax(u)+ s(u)−u]i ≥ [s(u)]i, meaning we must have

[s(u)]i = 0. This proves (15a). To obtain (15b), substitute (15a) into (13b).

Definition 1. Let the “sensitive” index set S ≡ S(x, u) := {i : (Ax)i > ui} and the

matrix E(S) =
∑

i∈S eie
T
i , where ei is the i-th column of the identity matrix.

That is, E(S) is the diagonal matrix with diagonal elements [E(S)]ii = 1 for

all i ∈ S and zero otherwise. Using Lemma 1 and this definition of E(S), we can

eliminate s and simplify the KKT conditions for Q(u).

Proposition 2. The KKT conditions for Q(u) implies

min
(
x, AT

t (Atx− bt) + AT E(S)(Ax− u)
)

= 0. (16)

We observe that while all the target voxels are involved in the above condition, only

the “sensitive” healthy voxels show up. One can infer from this observation that the

only healthy voxels ultimately involved in determining x(u) are those with [Ax(u)]i >

ui. As we will see in the next section, these voxels are included in the set that

the objective function f is sensitive to, a fact that will have significant algorithmic

implications.

Finally, we give an explicit expression for the solution x(u) of Q(u). Note that

s(u) can then be computed from (15a). We first partition the indices for x(u):

P = {i : x(u)i > 0}, O = {i : x(u)i = 0}. (17)

For a vector v, let vP denotes the sub-vector of v consisting of the components with

indices in P (similarly for vO). For a matrix M , MOP is the sub-matrix of M with

row indices from O and column indices from P (similarly for MPP ). The next result

follows directly from Proposition 2.

Proposition 3. Let the index set S∗ and the matrix E(S∗) be defined as in Definition

1 for x = x(u). Then the nonzero elements of x(u) are given by

x(u)P =
[
AT

t At + AT E(S∗)A
]−1

PP

(
AT

t bt + AT E(S∗)u
)

P
> 0, (18)

13



and at the same time satisfy[
AT

t At + AT E(S∗)A
]
OP

x(u)P ≥
(
AT

t bt + AT E(S∗)u
)

O
. (19)

Note that the matrix [AT
t At +AT E(S∗)A]PP is positive definite under Assumption 1.

2.4 Sensitivity of the Objective Function

To solve the problem (8) we are interested in how f changes as we adjust u. Again,

we have made Assumption 1 for all the following results.

Theorem 1. The function f(u) defined in (11) is monotone and non-increasing as

u increases; i.e.,

f(u + d) ≤ f(u), ∀ d ∈ Rm
+ .

Moreover, the equality holds if and only if

x(u + d) = x(u), s(u + d) = s(u) + d.

Proof. Let d ∈ Rm
+ . Then

f(u + d) =
1

2
‖Atx(u + d)− bt‖2 +

1

2
‖Ax(u + d) + s(u + d)− (u + d)‖2

≤ 1

2
‖Atx(u)− bt‖2 +

1

2
‖Ax(u) + (s(u) + d)− (u + d)‖2

= f(u),

since the subproblem Q(u + d) has the unique minimizer (x(u + d), s(u + d)) and the

point (x(u), s(u) + d) is feasible with respect to Q(u + d). The second statement also

follows immediately.

Note that we can always decease f(u) by increasing u as long as x(u) does not

stay the same.

Definition 2. Let the sensitivity of f to increases in ui be

σ(u)i = lim sup
t→0+

f(u + tei)− f(u)

t
.

The limit superior is used in our sensitivity definition because the limit may not

exist. Observe that when the limit does exist, σ(u)i is the one-sided partial derivative

that gives us information about how f(u) changes locally as we increase ui. Further-

more, whenever f is Gâteaux differentiable, σ(u) = ∇f(u). We will provide a mild

condition under which f is indeed Fréchet differentiable. However, before we restrict

ourselves, we examine a straightforward yet important consequence of the definition

of σ(u).
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Theorem 2. The sensitivity vector satisfies

σ(u)i

{
≤ −[Ax(u)− u]i, [Ax(u)]i > ui,

= 0, otherwise.
(20)

Proof. First consider any index i such that [Ax(u)]i ≤ ui. It can be easily verified that

for any t > 0 the pair (x(u), s(u) + tei) satisfies the KKT conditions for Q(u + tei),

so that

x(u + tei) = x(u), s(u + tei) = s(u) + tei.

Moreover, for any t > 0, f(u + tei) ≡ f(u). Hence, we have σ(u)i = 0.

Now consider any index i such that Ax(u)]i > ui. Since f(u + tei) is the optimal

value of Q(u + tei), we have

f(u + tei) = q(x(u + tei), s(u + tei), u + tei)

≤ q(x(u), s(u), u + tei)

= f(u)− [Ax(u)− u]it +
1

2
t2.

Therefore,
f(u + tei)− f(u)

t
≤ −[Ax(u)− u]i +

1

2
t.

Let t go to zero and we obtain the inequalities in (20).

Consequently, f(u) is sensitive to increases in ui if and only if [Ax(u)]i > ui. This

characterization of sensitivity is extremely simple and yet completely natural. Also,

it agrees with our conclusion following Proposition 2 concerning the healthy voxels’

influence on x(u). With no more information about the solutions x(u) and s(u), this

is all we can say about the sensitivity σ(u). So, we introduce a condition on the

subproblem solutions that we will assume from now on.

Assumption 2. The solution of Q(u) is strictly complementary.

Under this condition we will examine the differentiability of f(u), beginning with the

well-defined functions x(u) and s(u).

Lemma 2. The functions x(u) and s(u) are continuously differentiable in a neigh-

borhood of points where Assumption 2 holds.

Proof. Let “◦” denote the component multiplication for vectors and let us write the

complementarity equations in the KKT conditions (12) as

K(x, s, u) :=

(
x ◦ ∇xq(x, s, u)

s ◦ ∇sq(x, s, u)

)
= 0,
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which is clearly satisfied at (x̂, ŝ, û) = (x(û), s(û), û). We will verify the invertibility

of the Jacobian of K with respect to (x, s) at (x̂, ŝ, û). The Jacobian K ′
(x,s)(x, s, u) is[

Diag(∇xq(x, s, u)) + Diag(x)∇2
xq(x, s, u) Diag(x)AT

Diag(s)A Diag(s +∇sq(x, s, u))

]
,

where Diag(v) is the diagonal matrix with the vector v on the diagonal. Suppose that

K ′
(x,s)(x̂, ŝ, û)z = 0 with zT = [zT

1 zT
2 ]. Then

Diag(∇xq̂)z1 + Diag(x̂)∇2
xq̂z1 + Diag(x̂)AT z2 = 0 (21)

Diag(ŝ)Az1 + Diag(ŝ +∇sq̂)z2 = 0, (22)

where “hats” over q denote a gradient or Hessian evaluated at (x̂, ŝ, û). The assump-

tion of strict complementarity implies the (2, 2) block of K ′
(x,s)(x̂, ŝ, û) is positive

definite. Thus, we can solve (22) for z2:

z2 = −Diag(ŝ +∇sq̂)
−1Diag(ŝ)Az1 = −[I − E(Ŝ)]Az1,

where E(Ŝ) is defined as in Definition 1 with Ŝ = S(x̂, û). Let

D1 = Diag(x̂ +∇xq̂)
−1Diag(∇xq̂)

D2 = Diag(x̂ +∇xq̂)
−1Diag(x̂)

M = AT
t At + AT E(Ŝ)A.

Moreover, partition {1, . . . , n} into P = {i : ∇xq̂ = 0} and O = {i : x̂ = 0}.
Substituting z2 into (21), collecting terms, and pre-multiplying by Diag(x̂ +∇xq̂)

−1

we get

(D1 + D2M)z1 =
∑
i∈O

eie
T
i z1 +

∑
i∈P

eie
T
i Mz1 = 0. (23)

Note that D1 and D2 could be simplified by using strict complementarity in x. We

can further simplify (23) to [z1]O = 0 and MPP [z1]P = 0. Since M is positive definite

under Assumption 1, MPP is positive definite and thus z = 0.

Having established the nonsingularity of K ′
(x,s)(x(û), s(û), û), the result follows

from the Implicit Function Theorem.

By adding the strict complementarity condition, we can conclude that f is dif-

ferentiable and the inequalities in (20) become equalities, providing a closed form

expression for the gradient, or sensitivity, of f .

Theorem 3. If Assumption 2 holds at u, then f is differentiable at u with

σ(u) = ∇f(u) = −max(Ax(u)− u, 0) ≤ 0. (24)
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Proof. Observe from (11) that we can write f(u) = q(x(u), s(u), u). That is, f is q

composed with the functions x(·), s(·), and the identity mapping. From Lemma 2, we

know that x(·) and s(·) are differentiable at u and clearly the quadratic function q is

differentiable. Thus, the well-known chain rule theorem implies that f is differentiable

at u so that σ ≡ ∇f .

Let x ≡ x(·) and s ≡ s(·). Using this notation to distinguish arbitrary variables

x and s from the functions x(u) and s(u), we apply the chain rule to (11) to obtain

the j-th component of the gradient

σ(u)j = ∇f(u)j =
n∑

i=1

∂q

∂xi

∂xi

∂uj

+
m∑

i=1

∂q

∂si

∂si

∂uj

+
∂q

∂uj

.

where the partial derivatives of q are evaluated at (x(u), s(u), u) and the partial

derivatives of x and s are evaluated at u. We claim that in the two summations, each

term is zero. It suffices to consider the k-th term in the first summation, ∂q
∂xk

∂xk

∂uj
.

From the KKT conditions in (12a), complementarity gives ∂q
∂xk

xk = 0, where ∂q
∂xk

and

xk are evaluated at (x(u), s(u), u) and u, respectively. If xk > 0, then ∂q
∂xk

= 0; so the

product ∂q
∂xk

∂xk

∂uj
= 0. On the other hand, if xk = 0, then differentiating both sides of

(12a) with respect to uj,

0 =
∂

∂uj

(
∂q

∂xk

xk

)
=

∂2q

∂uj∂xk

xk +
∂q

∂xk

∂xk

∂uj

=
∂q

∂xk

∂xk

∂uj

.

Similarly, each term in the second summation must be zero. Substituting (15a) for

s(u), we obtain the formula

∇f(u) = ∇uq(x(u), s(u), u) = −(Ax(u) + s(u)− u) = −max(Ax(u)− u, 0).

Strict complementarity is sufficient, but not necessary, for the desirable property

of differentiability. Although degenerate behavior in x is difficult to predict, Lemma

1 provides a simple characterization of strict complementarity in s. We see that

(14b) is violated in component i exactly when [Ax(u)]i = ui. Given our least-squares

formulation, this degenerate case seems unlikely in practice.

We emphasize that under any circumstance (even without Assumption 1) the

vector −max(Ax(u)− u, 0) can always be computed once we obtain a solution x(u)

to the convex optimization problemQ(u) which, in the worse case, gives a conservative

estimate for the sensitivity σ(u) (see Theorem 2), and actually is the gradient ∇f(u)

whenever it exists. For convenience, from now on we will always call −max(Ax(u)−
u, 0) the sensitivity.
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3 A Greedy Algorithm

Recall our least-squares formulation (8):

min
u∈Dv

f(u) := q(x(u), s(u), u),

where Dv is the set of dose distributions that satisfy all the DVCs for a given problem,

and (x(u), s(u)) solves the subproblem Q(u),

(x(u), s(u)) = arg min
(x,s)≥0

q(x, s, u).

As has been mentioned, the set Dv is non-convex. Therefore, global minimization

of f in Dv is generally intractable. A realistic goal is to find a good local minimum and

find it quickly. To this end, we consider a simple algorithm framework that exploits

the monotonicity of the function f established in Theorem 1. In this framework, we

decrease f along a sequence of increasing dose bounds {uk ∈ Dv} so that

u0 ≤ u1 ≤ u2 ≤ · · · =⇒ f(u0) ≥ f(u1) ≥ f(u2) ≥ · · · .

This general framework can have different “relaxation schemes” to generate increasing

dose bound sequences {uk} ⊂ Dv, resulting in different approximate solutions to (8).

3.1 A Sensitivity-Driven Greedy Algorithm

In particular, we have experimented with a relaxation scheme based on the sensi-

tivity of f . We will call the resulting algorithm a Sensitivity-Driven Greedy (SDG)

algorithm.

Algorithm 1 (Sensitivity-Driven Greedy (SDG) Algorithm).

— Inputs: Initial dose bound u0 ∈ Dv.

— Output: Beamlet intensities x(uk).

for k = 0, 1, 2, . . .

1. Solve Q(uk) for x(uk).

2. Compute ∇f(uk) = −max(Ax(uk)− uk, 0).

3. If stopping criteria are met, output x(uk) and stop.

4. Set uk+1 = ProjDk
v

(
uk −∇f(uk)

)
where Dk

v = {u : u ≥ uk} ∩ Dv.

end

We note that in Step 4 the vector inside the projection operator is

uk −∇f(uk) ≡ max(uk, Ax(uk)) ≥ uk.
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Hence, a dose bound uk
i is replaced by the calculated dose value [Ax(uk)]i whenever

the latter is greater. The resulting larger vector is then projected onto the set Dk
v to

obtain the next dose bound uk+1. Since the set Dv is non-convex, so is Dk
v . Thus, the

projection operation in Step 4 calls for an explanation, which we will provide later.

The bulk of the computation in this framework is to solve the subproblemQ(uk) in

Step 1 at each iteration which is a convex quadratic program known as a non-negative

least-squares (NNLS) problem. Given their relative large sizes in IMRT applications,

a fast algorithm for solving these NNLS problems is of primary importance. On the

other hand, due to errors in leaf-sequencing, measurement, imaging, dose calculation,

patient motion, etc., high accuracy solutions are not necessary. In our implemen-

tation, we use an interior-point gradient algorithm that was originally designed to

strike a balance between reasonable accuracy and efficiency in this application [15].

For a comparison of this solver’s performance versus some other leading algorithms,

see [14].

For given stopping criteria, the output of SDG algorithm depends solely on the

choice of the initial u0 ∈ Dv. Our choice for u0 is the prescribed dose bounds at

the lowest level DVCs. For example, in the case of 2-level DVCs for the right lung,

which are “no more than 30% volume of the right lung should receive a dose of 20 Gy

or higher” and “no more than 40% volume of the right lung should receive 10 Gy or

higher,” we would set u0 = 10 Gy for all voxels in the right lung.

It is worth noting that although initial guesses for the beamlet intensities are

needed to start solving the subproblem Q(uk) at each iteration, they have no bearing

whatsoever to the final outcome of the algorithm (at least in theory).

3.2 Projection Operations

Despite Dv being non-convex, projection onto it happens to be trivial. For example,

suppose Dv ⊂ R10
+ describes the dose-volume constraint: at least 70% of the voxels

must have dose values no more than 5 Gy (i.e. only 3 of the 10 components can have

values greater than 5). Then

ProjDv
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T = [1, 2, 3, 4, 5, 5, 5, 8, 9, 10]T .

Here the projection sets the 7 smallest components equal to the minimum of their

value and 5. Clearly, this is the closest point in Dv as it affects the least change on

the original point in R10
+ . Applying the projection only requires a sorting operation

and can be done quickly. However, to define the projection uniquely we do need an a

priori tie-break rule. To break a tie, we may choose to give priority to the component

with the higher indices (by not setting it to a smaller value), or we may assign
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priority based on some available information such as relative distance to the tumor,

tissue density, individual voxel weights, etc. In numerical computation, however, ties

almost never occur and the effect of a tie-break rule is inconsequential.

The projection onto Dk
v is just as simple except for some additional bookkeeping.

We continue with the above example. Let

Dk
v :=

{
u ∈ R10

+ : u ≥ uk := [1, 2, 3, 4, 5, 6, 6, 5, 5, 5]T
}
∩ Dv.

We note that uk ∈ Dv with uk
6 = uk

7 = 6 > 5. Then

ProjDk
v
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]T = [1, 2, 3, 4, 5, 6, 7, 5, 5, 10]T .

Again the projection sets the 7 smallest components equal to the minimum of their

value and 5, but excludes the two (the 6th and 7th) corresponding to those in uk

whose values are greater than 5 to ensure that the resulting vector is component-wise

greater than or equal to uk. Should uk already have 3 components greater than 5,

then the projection would return uk unchanged since, being in Dv, the remaining

seven components of uk must be less than or equal to 5.

3.3 Convergence of the SDG Algorithm

Recall that solving the subproblem Q(u) means projecting a point in the prescription

set H onto the physical set K (see the definitions (3) and (4)). Under this projection

ProjK(·), it happens that the image of u is Ax(u) + s(u) ≡ u−∇f(u) (which follows

from (15a)). Therefore, in view of the Step 4 of the SDG algorithm, we can write(
bt

uk+1

)
= ProjHk

(
ProjK

(
bt

uk

))
, Hk := {bt} × Dk

v . (25)

The set Dv, thus the augmented set H defined in (3), is a union of a large (but

nevertheless finite) number of convex “branches,” each containing a local minimum –

a point closest to the physical set K defined in (4). The monotonicity of the iterates

{uk} guarantees that, without stopping, they will eventually enter and stay in a

fixed branch. Afterwards, the SDG algorithm reduces to the alternating projection

algorithm between two convex sets (a fixed branch of H and K), as is indicated

by (25). Since the convergence of the alternating projection is well known (see, for

example [1]), we have the following convergence result.

Theorem 4. Under Assumption 1, the Sensitivity-Driven Greedy Algorithm, without

stopping, generates an infinite sequence {uk} that converges to a local minimum of f

in Dv.
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However, since most of the local minima of f in Dv have little or no clinical

relevance, this convergence property has limited practical value. We refer interested

readers to [14] for a detailed proof. The clinical relevance of the SDG algorithm

ultimately lies in the effectiveness of the relaxation scheme to select a “good” branch

(or a “good” set of voxels to sacrifice). This effectiveness can only be verified through

experiments.

4 Numerical Comparison

We compare our model with a dose-volume-based least-squares model implemented

in the popular commercial planning system Pinnacle3 r© RayOptimizer [11, 12]. With-

out access to the commercial system, we have implemented a model that we call a

Pinnacle-like (PL) formulation, which is our best attempt to duplicate what is imple-

mented in Pinnacle3 RayOptimizer based on publicly available information known to

us.

4.1 A Pinnacle-Like Approach

The implemented Pinnacle-like (PL) model takes the same general form of weighted

least-squares models

min
x≥0

p(x) :=
N∑

k=1

wk pk(d(x)), (26)

where N is the number of planning structures, d(x) = Ax and each structure k has its

own weight wk (importance factor) and penalty function pk. We will denote the set

of voxel indices in the k-th structure by Vk with cardinality |Vk|. At the individual

structure level, there are two forms of penalty functions, one for critical (healthy)

structures and one for target (tumor) structures.

Assume that critical structure k has the dose-volume constraints “no more than

ηk
j % of the voxels can have doses above bk

j ” for j = 1, 2, . . . , ck, where ck is the number

of DVCs for critical structure k. Then the penalty function for this critical structure

is of the form

pk(d) =
1

|Vk|

ck∑
j=1

∑
i∈Vk

H(di − bk
j )H(d[ηk

j ]− di)

(
di − bk

j

bk
j

)2

, (27)

where d[ηk
j ] is the current dose value received at the ηk

j dose-volume level (i.e. at

d = d(x), ηk
j % of voxels receive a dose above d[ηk

j ]) and H is the heaviside function

H(y) = max(y, 0). This function only penalizes voxels with dose values between dk
j

and d[ηk
j ].
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Assume that target structure k has a prescribed dose bk and a dose upper bound

bk
max. Then the penalty function for this target structure is of the form

pk(d) =
1

|Vk|
∑
i∈Vk

[
H(bk − di) + H(di − bk

max)
](di − δk

δk

)2

, (28)

where δk = (bk +bk
max)/2 is our target fit value. Note that at any voxel only one of the

above two heaviside functions can be nonzero. It is unclear in the open literature what

is the exact form of the target penalty functions used in RayOptimizer, so (28) may

not be precisely what is implemented inside that software, but is in the same spirit as

its critical structure objective definitions. Namely, penalization by relative deviation

from δk occurs whenever dose is below the prescribed dose dk or above the maximum

dose bk
max. We have chosen this particular value of δk because we feel it should lead

to good target dose distributions and make this formulation more comparable to our

own (this form of δ is the same value which we use in our SDG implementation for bt).

With this exception, we have attempted to stay as close as possible to the Pinnacle3

formulation as described in [11, 12].

It is well known that the dose-volume-based penalty functions of the form (27)

are both non-convex and non-differentiable. The non-convexity makes starting point

selection an issue because different starting points can lead to different solutions.

The non-differentiability can be a potential source of bad numerical behavior for

optimization algorithms designed for smooth functions such as the Fortran solver

NPSOL [7] employed by Pinnacle3 r© RayOptimizer [11].

4.2 Setup of Experiments

Our numerical comparison has been carried out primarily under the Matlab r© 7 envi-

ronment. While the SDG algorithm is implemented entirely in Matlab, the PL imple-

mentation uses, just like the commercial system Pinnacle3 r© RayOptimizer [11, 12],

the Fortran 77 package NPSOL r© [7] as its optimization engine. We believe that the

use of a strong Fortran solver should give PL a considerable advantage on execution

speed.

The NPSOL documentation [7] indicates that it stops whenever the relative change

in the objective function drops below a given tolerance. In all of our tests, we used the

same stopping tolerance of 10−2 in both SDG and PL algorithms. All the numerical

results have been produced in Matlab 7 on a Linux workstation with a 3.8 GHz Intel

Xeon processor and 8Gb of memory.

We have used the freely-available Computational Environment for Radiotherapy

Research (CERR) from Joe Deasy’s group at Washington University in St. Louis
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[6, 5]. This is a Matlab implementation of the vital features we need for fluence

optimization, namely clinical data interface, dose calculation, and visualization. In

our experiments, we used the QIB dose calculation engine native to CERR to generate

an influence matrix for each test case using nine equally-spaced beams.

Our numerical experiments have been conducted on eight clinical cases: 6 rela-

tively large cases (2 esophagus and 4 lung cases) and 2 small ones (a head-and-neck

and a prostate case). By the size of a case we refer to the number of voxels involved

in the region of treatment. More details on the test data have been included in the

Appendix.

For each test case and each model, we settled at a computed solution corresponding

to a set of tuned weights that we considered to be the best seen after an extensive trial-

and-error process. The procedure for selecting weights always started with tuning

weights for our model first, then we used the best weights found for our model as the

“initial guesses” for the PL model. In some cases, the final choices are the same for

both, or very similar. In others, they differ greatly.

4.3 Summary of Results

Due to the aforementioned multi-objectiveness and the vagueness of clinical objec-

tives, comparing the quality of IMRT treatment plans is a job for qualified medical

specialists. However, we can still make assessments based on dose-volume constraint

compliance.

In two test cases, the lung B case and the prostate case, the SDG solutions were

clearly better than those of PL (more information on these two cases is given in the

Appendix). On the other hand, in the two esophagus cases the SDG solutions violated

the dose-volume constraints more significantly than the PL did. For the rest of the

four cases, the SDG solutions appeared either comparable or marginally better than

the PL ones. Overall, we can only conclude that in terms of DVC compliance, the

two methods have generated clinically relevant plans of competitive qualities over the

eight tested cases, though none consistently outperformed the other.

The reason for the lesser performance of SDG in the two esophagus cases appeared

to be that the relaxation scheme in use was a bit too greedy. There is certainly room

for further research on relaxation strategies in our approach.

Another important aspect of the comparison is the speed of planning. In Table 1,

we list run times in CPU seconds for each case. Note that these are planning times for

the best importance factors found, not the total time spent during the trial-and-error

process. Timing information on the head and neck and the prostate cases in Table 1

is less meaningful because these are two very small cases with fewer voxels. On the

six larger (esophagus and lung) cases, the average speedup of SDG over PL is greater
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Table 1: Run Time Comparison (in CPU seconds)

Case Name PL Time SDG Time PL/SDG Ratio

Esophagus A 1510 244 6.2

Esophagus B 1643 287 5.7

Lung A 1536 169 9.1

Lung B 112∗ 118 0.95∗

Lung C 954 90 10.6

Lung D 2237 178 12.6

Headneck 80 93 0.86

Prostate 65 31 2.1

than 7.5. We consider this to be a significant speedup, especially in view of the fact

that PL used the commercial Fortran 77 package NPSOL as its optimization engine,

while SDG is programmed entirely in Matlab.

The SDG speedups are even more promising if we take into account the fact that

during our trial-and-error process of importance factor selection, the SDG times were

much more stable than those of PL. For example, on Lung B, one choice of weights

for PL led to a solution that bore a striking resemblance in quality to the final one we

have reported, but for which PL took 17 minutes, not 2 minutes as reported in the

table (thus the asterisk). Similar behavior of wildly varying times was observed for

Esophagus B and Lung D as well. In this context, the run time for the best weights

found is really not as indicative as the total elapsed time spent on tuning to find a

good plan. Our numerical experiments suggest that our algorithm is not only faster

but also more reliable than PL given the trial-and-error environment.

In summary, at this point the primary advantages of the SDG algorithm over PL

appear to be speed and stability. SDG demonstrated substantial speedups over PL in

almost all cases despite the fact that PL used a well-established commercial Fortran

package as its optimization solver. The reported times did not include the many hours

(in some cases) spent in tuning weights, nor did they indicate the erratic behavior of

PL’s running times. We submit that the time spent tuning PL weights with PL runs

was greatly reduced by starting with the tuned SDG weights since it is much faster

per run than PL. Based on this fact alone, we believe that SDG can already be useful

in speeding up the trial-and-error process in IMRT treatment planning.
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5 Final Remarks

Although the wide-spread use of the PL-type models in clinical practice may be jus-

tified by their good track record, from a theoretical perspective, these models leave

much to be desired. In our view, the issue of non-differentiability is the most dis-

turbing because optimization software designed for differentiable functions, such as

NPSOL, is routinely applied to non-differentiable PL-type models in today’s clinical

practice. Indeed, the frequency with which we encountered abnormal terminations

of NPSOL hints at a volatility to PL-type models that should be at least partly

attributable to non-differentiability. In contrast, the objective function in our formu-

lation is continuously differentiable under a mild condition. (In fact, it is well defined

in any circumstance with or without differentiability.)

We claim that from a practical perspective, the inherent non-convexity and non-

linearity present in dose-volume-based models is more pronounced in the PL approach

than in ours. Several of our PL experiments were frustrated due to declared “con-

vergence” by NPSOL to some spurious (possibly stationary) points and we had to

restart from different initial guesses. In practice, this amounts to another level of

“tuning” that must be done with PL to find suitable starting beamlet intensities. The

SDG method, on the other hand, only requires solving well-behaved convex quadratic

subproblems at every iteration and is therefore insensitive to the initial guesses for

beamlet intensities.

In our view, the speed and stability advantages exhibited by our approach could

be attributed to two desirable properties: (a) our model has a monotone objective

function, and (b) our algorithm only requires solving convex quadratic programs.

This nice combination enables us to alleviate the non-convexity problem inherent in

dose-volume-based fluence optimization.

In conclusion, our new dose-volume-based, least-squares approach has demon-

strated a promising potential as a practical tool for IMRT treatment planning. It

strikes a critical balance between the computational tractability needed in this appli-

cation and the theoretical rigor lacking from some existing dose-volume-based least-

squares models.
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A Details on Data and Results

A.1 Clinical Data Description

The data set consists of eight clinical cases: 2 esophagus cases, 4 lung cases, a head

and neck case and a prostate case. The esophagus and lung cases are courtesy of

M.D. Anderson Cancer Center Thoracic Oncology Department, while the head-neck

and prostate cases are distributed with CERR [5]. For the esophagus and lung cases,

all the planning requirements have been specified by an actual physician. The pre-

scriptions for the head-neck and prostate cases, on the other hand, have been chosen

in accordance with treatment guidelines laid out by physicians at Memorial Sloan-

Kettering Cancer Center [13]. For the sake of space, we only present detailed pre-

scription information and computational results for two cases: the lung B case and

the prostate case. More details are contained in the second author’s thesis [14].

For the lung B case, an upper bound of 45 Gy is put on the spinal cord. The heart

has the DVC that no more than 40% of the volume can receive doses greater than 40

Gy, or in short “volume(≤ 40%) > 40 Gy”. The esophagus has the DVC: “volume(≤
50%) > 50 Gy.” Moreover, the total lung has the DVCs: “volume(≤ 45%) > 10 Gy”

and “volume(≤ 35%) > 20 Gy.” Finally, at least 95% of the target volume must

receive at least 70 Gy with an upper bound of 75 Gy.

For the prostate case, the planning target volume (PTV) has overlaps with both

the bladder and the rectum. The bladder excluding the PTV volume has the DVC

that “volume(≤ 53%) > 47 Gy”. The rectum excluding the PTV volume has the

DVCs that “volume(≤ 53%) > 47 Gy” and “volume(≤ 30%) > 75.6 Gy”. In addition,

all voxels are limited by an upper bound of 100 Gy to prevent hot spots. At least

95% of the target must receive at least 77 Gy with an upper bound of 90 Gy.

A.2 Results on Lung B and Prostate Cases

In IMRT, the DVC compliance is visualized by dose-volume histograms (DVHs),

where the x-axis represents dose values and y-axis represent accumulated volume

percentage. In the DVH, each planning structure has a corresponding curve. For

example, the point (30,50) on the curve for esophagus means that 50% of esophagus

voxels have dose values 30 Gy or higher. The ideal curve for a target structure is a

step function dropping from 100 to zero at the prescribed dose value. For a healthy

structure, the lower the curve is, the better. Another common tool for plan evaluation

is contours of dose values called isodose lines.

The DVHs for the Lung B case are given in Figure 3, where PTV stands for

Planned Target Volume. For the spinal cord and esophagus, the DVH curves for
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SDG (solid lines) are much lower than those for PL (dashed lines), respectively. The

isodose lines shown in Figure 4 seem to a give a consistent assessment.

Structure overlap occurs in the prostate case. We have chosen to remove the voxels

shared by the rectum and bladder with the planned target volume from these two

organs since we expected inevitable damage to those tissues. The DVHs in Figure 5

suggest a much better SDG solution on all fronts than that of PL. Also, the target

dose is much more homogeneous with SDG. Again, the isodose lines in Figure 6 seem

to confirm this assessment. Comparing the lower part of the two 45 Gy isodose lines,

we see that the SDG line is conspicuously curved in to avoid the critical organ below.
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Figure 3: Lung B - DVH (SDG solid/PL dashed).

Figure 4: Lung B - Dose Distributions.
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Figure 5: Prostate - DVH (SDG solid/PL dashed).

Figure 6: Prostate - Dose Distributions.
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