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Abstract

We extend the classic alternating direction method for convex optimization to solving the non-convex, non-
negative matrix factorization problem and conduct several carefully designed numerical experiments to compare
the proposed algorithms with the most widely used two algorithms for solving this problem. In addition, the
proposed algorithm is also briefly compared with two other more recent algorithms. Numerical evidence shows
that the alternating direction algorithm tends to deliver higher-quality solutions with faster computing times on
the tested problems. A convergence result is given showing that the algorithm converges to a Karush-Kuhn-
Tucker point whenever it converges.

1 Introduction
Nonnegative matrix factorization (NMF) is a dimension reduction and clustering technique for data analysis,
most suitable for data that are innately additive mixtures of nonnegative components such as concentrations or
intensities. It appears that NMF was first used by Paatero and his coworkers [15, 16, 17] in areas of environmental
science. The 1999 paper of Lee and Seung [12] in the journal Nature has greatly popularized the use and research
of this technique. To this date, there is already a vast literature1 on the applications of NMF in various areas and
on numerical algorithms for solving various NMF-related models (see, for example, the survey paper [1], two
recent books [3, 4] and the references thereof).

The purpose of the present paper is to introduce yet another algorithm based on an extension of the classic
alternating direction approach for solving a fundamental NMF model, and to present numerical evidence showing
that on a range of tested problems the proposed algorithm brings a clearly improved performance in comparison to
some existing state-of-the-art algorithms. A simple result on convergence is obtained showing that the algorithm
can only converge to Karush-Kuhn-Tucker (KKT) points.

1.1 The NMF Problem
Given a matrix M ∈ Rm×n of nonnegative entries, the nonnegative matrix factorization (NMF) problem is to
approximate M by (or possibly decompose M into) a product of two lower-rank nonnegative matrices X ∈
Rm×k and Y ∈ Rk×n where k < min(m,n) (usually k � min(m,n) in applications). A more precise name
for this problem is approximative nonnegative matrix factorization (ANMF), but the acronym NMF seems to
have been accepted as the de facto standard name.

1An online search in Google Scholar using the key phrase ”nonnegative matrix factorization” (within quotes) returned about 1580 entries
on January 19th, 2010.
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A fundamental model in NMF utilizes the least squares cost function to measure the closeness of matrices,
resulting in the following standard NMF problem

min
X,Y

f(X,Y ) ,
1
2
‖XY −M‖2F s.t. X ≥ 0, Y ≥ 0, (1)

where ‖ · ‖F is Frobenius norm, and the inequalities are component-wise. Other cost functions, particularly
the Kullback-Leibler divergence, have also been used in NMF. Moreover, additional regularization terms in cost
functions have been used in order to encourage desirable properties such as sparsity. In this paper, we will
only focus on solving problem (1). Specifically, we propose the use of an alternating direction method (ADM)
approach for solving problem (1). It should be clear that similar algorithms can also be derived for other models
or cost functions from this ADM approach.

It is well understood that problem (1) is non-convex that generally permits non-global local minima. It is
also clear that a given objective value f(X,Y ) can be attained by infinitely many different pairs of (X,Y ) due
to the invariance of the product XY under the transformation (X,Y )→ (XD,D−1Y ) as long as nonnegativity
is maintained (for example, D can be any positive diagonal matrix). The stationarity conditions for (1) can be
written as

F (X,Y ) ,

[
min

(
XT , Y (XY −M)T

)
min

(
Y,XT (XY −M)

) ]
= 0, (2)

where the minimums are taken component-wise, which is a condensed form for the more explicit conditions

X � (XY −M)Y T = 0, X, (XY −M)Y T ≥ 0
Y �XT (XY −M) = 0, Y,XT (XY −M) ≥ 0, . (3)

where � denotes component multiplications. A pair (X,Y ) is called a Karush-Kuhn-Tucker (KKT) point of
problem (1) if it satisfies (2) or (3). In our case, a KKT point can be either a local (or global) minimum or a
saddle point, but not a local maximum unless both (XY −M)Y T = 0 and XT (XY −M) = 0 which is highly
unlikely.

1.2 Most widely used algorithms for NMF
The first method used for solving problem (1) seems to be the alternating least squares (ALS) algorithm utilized
by Paatero and Tapper in 1994 [15]. It minimizes the least squares cost function with respect to either X or Y ,
one at a time, while fixing the other and disregarding nonnegativity, and then sets any negative entries to zero
after each least squares step. The scheme can be written as the following updates:

X+ = P+

(
MY T (Y Y T )†

)
, (4a)

Y+ = P+

(
(XTX)†XTM

)
, (4b)

where the superscript “†” denotes pseudo-inverse, and P+ denotes the projection onto the set of nonnegative
matrices of appropriate sizes; i.e., for a matrix X

P+(X) , max(0, X) (5)

where the maximum is taken component-wise. This algorithm is still widely used today.
Another vastly popular method for NMF is the multiplicative updating (or simply Mult) method proposed by

Lee and Seung [13]. It can be written as

X+ = X � [(MY T )� (XY Y T + ε)], (6a)
Y+ = Y � [(XTM)� (XTXY + ε)], (6b)

where � denotes component divisions and a small number ε > 0 is added to guard against division by zero.
When started from nonnegative initial guesses, the iterates will remain nonnegative throughout iterations. By all
indications, this algorithm appears to have been the most widely used solution method in NMF by far.
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The popularity of ALS and Mult algorithms among practitioners is perhaps attributable in part to their re-
markable simplicity and to the fact that they do not require setting of algorithmic parameters, beside the fact
that they do produce reasonable results in practical applications within a reasonable amount of time. Both of the
above two algorithms have been implemented in the Matlab Statistics Toolbox. In fact, they are the only two
algorithms implemented in the Statisitcs Toolbox (up to version V7.2 (R2009b)). The Matlab documentation
states that “In general, the ’als’ algorithm converges faster and more consistently. The ’mult’ algorithm is more
sensitive to initial values, which makes it a good choice when using ’replicates’ to find W and H from multiple
random starting values.” Here W and H are, respectively, X and Y in our notation.

The theoertical properties of the ALS and Mult algorithms, without modifications, are still not well under-
stood. For instance, it is not known whether or not the algorithms converge to a stationary point when conver-
gence does occur. Numerical stability is a known issue for ALS since X or Y can, and often does, become
numerically rank deficient during iterations.

1.3 Organization
This paper is organized as follows. In Section 2, we propose a new algorithm for NMF by extending the classic
alternating direction method for convex optimization. A simple convergence result for the proposed algorithm is
given in Section 3. Section 4 contains several sets of computational results cpmparing the proposed algorithm
with several state-of-the-art algorithms. Finally, we provide some concluding remarks in Section 5.

2 Alternating Direction Algorithm for NMF

2.1 The classic ADM approach
In a finite-dimensional setting, the classic alternating direction method (ADM) is for solving structured convex
programs of the form

min
x∈X ,y∈Y

f(x) + g(y) s.t. Ax+By = c, (7)

where f and g are convex functions defined on closed convex subsets X and Y of finite-dimensional spaces,
respectively, A,B and c are matrices and vector of appropriate sizes. The augmented Lagrangian function of (7)
is

LA(x, y, λ) = f(x) + g(y) + λT (Ax+By − c) +
β

2
‖Ax+By − c‖22, (8)

where λ is a Lagrangian multiplier vector and β > 0 is a penalty parameter.
The classic alternating direction method [7, 6] is an extension of the augmented Lagrangian multiplier method

[9, 18, 19], It performs one sweep of alternating minimization with respect to x and y individually, then updates
the multiplier λ; that is, at the iteration k an ADM scheme executes the following three steps: given (xk, yk, λk),

xk+1 ← argmin
x∈X

LA(x, yk, λk), (9a)

yk+1 ← argmin
y∈Y

LA(xk+1, y, λk), (9b)

λk+1 ← λk + γβ(Axk+1 +Byk+1 − c), (9c)

where γ ∈ (0, 1.618) is a step length. It is worth noting that (9a) only involves f(x) in the objective and (9b)
only g(y), whereas the classic augmented Lagrangian multiplier method [9, 18, 19] requires a joint minimization
with respect to both x and y; i.e., replacing steps (9a) and (9b) by

(xk+1, yk+1) ← argmin
x∈X ,y∈Y

LA(x, y, λk),

which involves both f(x) and g(y) and could become much more expensive. A convergence proof for the above
ADM algorithm can be found in [5].
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2.2 ADM Extension to NMF
To facilitate an efficient use of alternating minimization, we first introduce two auxiliary variables U and V , and
consider the following equivalent model,

min
X,Y,U,V

1
2
‖XY −M‖2F s.t. X − U = 0, Y − V = 0, U ≥ 0, V ≥ 0, (10)

where U ∈ Rm×k and U ∈ Rk×n. The augmented Lagrangian function of (10) is

LA(X,Y, U, V,Λ,Π) = 1
2‖XY −M‖

2
F +

Λ • (X − U) + Π • (Y − V ) + α
2 ‖X − U‖

2
F + β

2 ‖Y − V ‖
2
F ,

(11)

where Λ ∈ Rm×k, Π ∈ Rk×n are Lagrangian multipliers and α, β > 0 are penalty parameters for the constraints
X − U = 0 and Y − V = 0, respectively, and for matrices A and B of the same size the scalar product “•” is
the sum of all element-wise products, i.e., A •B =

∑
i,j aijbij .

The alternating direction method (ADM) for (10) is derived by successively minimizing the augmented La-
grangian function LA with respect toX,Y, U and V , one at a time while fixing others at their most recent values,
and then updating the multipliers after each sweep of such alternating minimization. The introduction of the two
auxiliary variables U and V makes it easy to carry out each of the alternating minimization steps. Specifically,
these steps can be written in a closed form,

X+ =
(
MY T + αU − Λ

)
(Y Y T + αI)−1, (12a)

Y+ = (XT
+X+ + βI)−1

(
XT

+M + βV −Π
)
, (12b)

U+ = P+(X+ + Λ/α), (12c)
V+ = P+(Y+ + Π/β), (12d)
Λ+ = Λ + γα(X+ − U+), (12e)
Π+ = Π + γβ(Y+ − V+), (12f)

where the subscript “+” is used to denote iterative values at the new iteration. Since the involved inverse matrices
are both k × k, the corresponding linear systems are relatively inexpensive for k � min(m,n). In this case,
the dominant computational tasks at each iteration are the matrix multiplications MY T and XTM , together
requiring about 4rmn arithmetic operations (scalar additions and multiplications).

3 Convergence to KKT Points
In this section, we provide a partial result on the convergence of the proposed ADM algorithm. To simplify
notation, let us define the sextuple

Z , (X,Y, U, V,Λ,Π).

A point Z is a KKT point of problem (10) if it satisfies the KKT conditions for problem (10):

(XY −M)Y T + Λ = 0, (13a)
XT (XY −M) + Π = 0, (13b)

X − U = 0, (13c)
Y − V = 0, (13d)

Λ ≤ 0 ≤ U, Λ� U = 0, (13e)
Π ≤ 0 ≤ V, Π� V = 0. (13f)
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Proposition 1. Let {Zk}∞k=1 be a sequence generated by the ADM algorithm (12) that satisfies the condition

lim
k→∞

(Zk+1 − Zk) = 0. (14)

Then any accumulation point of {Zk}∞k=1 is a KKT point of problem (10). Consequently, any accumulation point
of {(Xk, Yk)}∞k=1 is a KKT point of problem (1).

Proof. We can rearrange the ADM update formulas in (12) into

(X+ −X)(Y Y T + αI) = −
(
(XY −M)Y T + α(X − U) + Λ

)
, (15a)

(XT
+X+ + βI)(Y+ − Y ) = −

(
XT

+(X+Y −M) + β(Y − V ) + Π
)
, (15b)

(U+ − U) = P+(X+ + Λ/α)− U, (15c)
(V+ − V ) = P+(Y+ + Π/β)− V, (15d)

Λ+ − Λ = γα(X+ − U+), (15e)
Π+ −Π = γβ(Y+ − V+), (15f)

The assumption Z+ − Z → 0 implies that the left- and right-hand sides above all go to zero. Now we add
subscript k to all variables X,Y, · · · , and replacing X+ by Xk+1, Y+ by Yk+1, · · · and so on. Letting k go to
infinity and noting Xk+1 = Xk + (Xk+1 −Xk), · · · and so on, where the second term vanishes asymptotically,
we have

(XkYk −M)Y Tk + Λk → 0, (16a)
XT
k (XkYk −M) + Πk → 0, (16b)
P+(Xk + Λk/α)− Uk → 0, (16c)
P+(Yk + Πk/β)− Vk → 0, (16d)

Xk − Uk → 0, (16e)
Yk − Vk → 0, (16f)

where the terms α(Xk−Uk) and β(Yk−Vk) have been eliminated from (16a) and (16b), respectively, by invoking
(16e) and (16f). Clearly, the first four equations in the KKT conditions (13) for problem (10) are satisfied at any
limit point

Ẑ = (X̂, Ŷ , Û , V̂ , Λ̂, Π̂).

The nonnegativity of Û and V̂ are guaranteed by the algorithm construction. Therefore, we only need to verify
the non-positivity of Λ̂ and Π̂, and the complementarity between Û and Λ̂ and between V̂ and Π̂. Now we
examine the following two equations derived from (16c) and (16d), respectively,

P+(X̂ + Λ̂/α) = Û , (17a)
P+(Ŷ + Π̂/β) = V̂ . (17b)

If Ûij = X̂ij = 0, then (17a) reduces to P+(Λ̂/α)ij = 0 yielding (Λ̂)ij ≤ 0. On the other hand, If Ûij = X̂ij >

0, then (17a) implies that Λ̂ij = 0. This proves the non-positivity of Λ̂ and the complementarity between Û and
Λ̂. The same argument can be applied to (17b), due to the identical structure, to prove the non-positivity of Π̂
and the complementarity between V̂ and Π̂.

We have verified the statement concerning the sequence {Zk}∞k=1 and problem (10). The statement con-
cerning the sequence {(Xk, Yk)}∞k=1 and problem (1) follows directly from the equivalence between the two
problems. This complete the proof.

The following corollary follows immediately.

Corollary 1. Whenever {Zk}∞k=1 converges, it converges to a KKT point

Far from being satisfactory, the above simple result nevertheless provides some assurance on the behavior
of the ADM algorithm applied to the non-convex NMF problem. Further theoretical studies in this direction are
certainly desirable.
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4 Computational Results
We conducted a series of numerical experiments to compare the proposed ADM algorithm with the two algo-
rithms ALS and Mult discussed in Section 1.2. In our opinion, these two algorithms still represent the state of the
art in this area because (1) they appear to be the most widely used algorithms by far, judging from NMF appli-
cation papers published up to this date; (2) they remain the only algorithms implemented in the Matlab Statistics
Toolbox today. In addition, based on our limited observations, the performance of some newer algorithms (whose
Matlab implementations were readily available) is not consistently and convincingly better than that of ALS or
Mult when tested on a wide range of problem sizes and characteristics. To be more thorough, we also included
some additional comparison with two selected recent algorithms (see Section 4.4) beside ALS and Mult.

4.1 Implementational and experimental details
A pseudo code for the implemented ADM algorithm is as follows.

Input: M ∈ Rm×n, integers k,maxiter > 0 and tol > 0
Output: X ∈ Rm×k and Y ∈ Rk×n
Set α, β, γ > 0, and Y to a nonnegative random matrix.
Set U, V,Λ,Π to zero matrices of appropriate sizes.
for k = 1, maxiter do

Update (X,Y, U, V,Λ,Π) by the formulas in (12) ;
if a stopping criterion relative to tol is met then

exit and output X and Y ;
end

end

The most important algorithmic parameters are α, β, γ > 0. In our implementation (which was still prelim-
inary), we set γ = 1.618 and α = β. Short of solid theoretical guidances, we used the following heuristic to
select α: we first scale M so that ‖M‖F = 5e+06, then set α = 2000m/k. This selection seems to have worked
well for the tested matrices. A stopping criterion is met, relative to a tolerance value tol, if one the the following
3 conditions is satisfied:

|fk − fk+1|/|fk| ≤ tol

‖Fk‖F /‖F0‖F ≤ tol

fk ≤ tol

where fk = ‖XkYk − M‖2F /2 is the objective value and Fk is the optimality residue F (Xk, Yk) where F
is defined in (2). Moreover, we require that the first condition above must be satisfied at three consecutive
iterations.

Throughout the experiments and for all tested algorithms, we set the maximum number of iterations to
maxiter = 500 and the tolerance value to tol = 1e-07 unless otherwise specified. We also use the same
random initial guesses to start all algorithms tested. The random numbers are generated by the Matlab command
rand that are uniformly distributed in the interval [0, 1]. Other than specifying maxiter and tol, we always
used the default settings of the tested algorithms.

All numerical experiments were run on a MacBook Pro laptop computer with an Intel Core 2 Duo processor
at 2.8GHz with 4GB RAM under Matlab version 7.10 (R2010a Prerelease).

4.2 Tests on images
To visualize results, we applied the three NMF algorithms, ADM, ALS and Mult, to two grayscale images and
compared the obtained NMF results with those of the plain SVD method, despite that natural image compression
has not been considered as one of the strength areas of the NMF technique. The two grayscale images, Kittens on
the left and Panda on the right in Figure 1, have resolutions 768× 1024 and 1200× 1600, respectively. We used
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the Matlab command [U,S,V] = svds(M,k) to calculate a unconstrained, rank-k optimal approximation to
the matrix M , where the Matlab function svds(M,k) computes a rank-k partial SVD decomposition of M .

Original (768 x 1024) Original (1200 x 1600)

Figure 1: Original images: Kittens and Panda.

The results on image Kittens are given in Figure 2 for k = 48. We observe from Figure 2 that while
SVD, ADM and Mult gave visually similar results with relative errors equal to 1.01e-01, 1.09e-01 and 1.16e-01,
respectively, ALS produced a significantly inferior image that has a relative error at 2.34e-01. The relative errors
are calculated by the formula:

RelErr ,
‖XY −M‖F
‖M‖F

(19)

where M represents the original image and XY is a low-rank approximation (in the SVD case XY = USV T ).

SVD ADM Mult ALS

Figure 2: Results on image Kittens for k = 48.

On image Panda, ALS also performed much more poorly than the others. For example, for k = 30 the
relative error and solution time for ALS were, respectively, 2.02e-01 and 3.30e+02 (in seconds), much worse
than the corresponding numbers for the other methods (see Table 1). Due to its lack of competitiveness, we omit
ALS form the reported results on image Panda.
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Table 1: Relative error and solution time (in seconds) on image Panda

Method SVD ADM Mult
Rank Rel. Error Time Rel. Error Time Rel. Error Time
k = 120 4.76e-02 1.32e+01 6.04e-02 4.97e+01 7.23e-02 1.03e+02
k = 60 7.53e-02 6.85e+00 8.97e-02 2.35e+01 9.71e-02 6.20e+01
k = 30 1.11e-01 4.74e+00 1.23e-01 1.61e+01 1.27e-01 6.16e+01
k = 15 1.49e-01 3.07e+00 1.59e-01 1.09e+01 1.62e-01 5.17e+01

The results on image Panda are given in Table 1 and Figure 3 for the three methods, SVD, ADM and Mult.
Table 1 show that the unconstrained SVD obtained slightly better relative errors, as expected, than those of ADM
which in turn are slightly better than those of Mult in all tested cases. In terms of computing times, ADM is
about over three times more expensive than SVD, while Mult is 2-5 times more expensive than ADM. However,
it is interesting to note from Figure 3 that even though the SVD results have smaller relative errors, they are
visually less appealing than the NMF results when k = 30 and 15 because of more severe loss of black-and-
white contrast. Apparently, this loss of contrast was due to the fact at SVD allows negative entries in its low-rank
approximations.

4.3 Tests on random matrices
We did rather extensive tests on random matrices that are generated as follows. A rank-r nonnegative test matrix
M ∈ Rm×n has the formM = LDR where L ∈ Rm×r andR ∈ Rr×n are nonnegative and randomly generated
using the Matlab command rand, whileD is an r×r positive diagonal matrix with (1, 2, · · · , r) on its diagonal.
This diagonal scaling makes M slightly to moderately ill-conditioned depending on how large r is.

Numerical results on three sets of random matrices are given in Figure 4 where the left column is for approx-
imation quality and the right for computing times. In the first test set, m = n = r = 500 so the random matrices
are of full rank. We ran the three algorithms, ADM, ALS and Mult, for k = 50, 100, 150, · · · , 500. In the second
test, again m = n = 500, but r varied from 10 to 100 with increment 10, while k = r/2. In the third test, we set
r = k = 30 and varied m = n from 100 to 1000 with increment 100. Each test set is corresponding to a row in
Figure 4 where the obtained relative errors and computing times are plotted in the left and right figures of each
row, respectively. The relative errors are defined as in (19) and the computing time was measured in seconds.

It should be evident from Figure 4 that in all the tests the ADM algorithm clearly outperformed both the
ALS and Mult algorithms. It not only obtained the best quality in approximation but did so with the fastest
time in all the tested cases without exception. In the first two test sets, the gap in solution quality widens as the
approximation rank k increases, while the gap in solution time slightly narrows. In the third test set where r and
k are equal and fixed, the quality gap narrows as problem sizes increase while the gap in solution time widens.

It is interesting to note from the third row of Figure 4 that when k = r the algorithms seemed to have reached
proximity of global minima since the final relative residue values were close to zero. This is particular true for the
ADM algorithm when the problems were relatively small, but if more iterations were allowed, higher accuracy
could be attained for larger problems as well. Indeed, our more extensive tests have shown that on matrices that
are products of random low-rank nonnegative matrices, the ADM algorithm appears to be able to reach global
optimality at high probability, which approached the unity at least in some test cases.

We also tested other types of random matrices and observed similar advantages of the ADM algorithm over
the other two algorithms. For example, we tested on matrices that are products of nonnegative, low-rank, sparse
matrices generated by using the Matlab command sprandn and then taking absolute values. We did observe
improved performance of the ALS algorithm on such sparse problems, especially in cases where k = r and
global minima were reachable at high probability (in those cases, ALS can sometimes attain better accuracy than
AMD). In Section 4.5, we will present test results on the extreme case where data matrices are positive diagonal
so that the global minima of the NMF problems are always known.
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Figure 4: Comparison of the 3 algorithms on random test problems.
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4.4 Comparison to RRI and Gradient Projection
A considerable number of algorithms have recently been proposed for solving the NMF problem. In this subsec-
tion, we compare the ADM algorithm briefly with two of the recent algorithms for which Matlab codes were read-
ily available online. One is the rank-1 residue iterations (RRI) algorithm proposed by Ho, Van Dooren and Blon-
del [10] (also independently in [2]). RRI successively updates each rank-1 term in the sum XY =

∑k
j=1 xjy

T
j

while keeping the other k − 1 terms fixed, where xj is the jth column of X and yTj the jth row of Y . Another
is a projected gradient method proposed by Lin [14]. We selected RRI because it was shown in [2] to have
outperformed a number of other algorithms including ALS and Mult. Beside its ready availability, the projected
gradient method of Lin [14] was selected as a representative of algorithms based on the general principle of gra-
dient descent. There are certainly other algorithms that deserve to be included for comparison (for example, those
in [8, 11] among many candidates), but since our comparison was not meant to be exhaustive, we only selected
the RRI algorithm and Lin’s algorithm for the interest of space. For both of these algorithms, we used Matlab
codes provided by the authors to do comparison. Results obtained from this comparison is given in Figure 5.
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Figure 5: Comparison of ADM, Lin and RRI Algorithms on random matrices.

In these experiments, we used the same construction of random matrices as described in the previous sub-
section. The matrices are of 500 × 500 with rank 100. The low rank value k was varied from 10 to 100 with
increment 10. The same random initial guesses and maximum iteration number, maxiter = 500, were used for
all three algorithms. The stopping tolerance for ADM was 1.0e-07, and for Lin’s algorithm it was 1.0e-06 (since
1.0e-07 was too restrictive for Lin’s code on this test). On the othet hand, RRI does not require a tolerance.

As is evident in Figure 5, in comparison to the other algorithms, ADM obtained either equally good or better
solution quality with much shorter computing times. Also, on these problems Lin’s algorithm obtained better
quality than RRI but generally required longer computing times.

4.5 Chances of getting global optima
Due to non-convexity, the globally optimal function value for an NMF problem is generally unknown. To obtain
indications on the ability of NMF algorithms to reach global optimality, we test these algorithms on simple
positive diagonal matrices for which global optima are known. Specifically, we construct test matrices M ∈
Rn×n of the form

M = 10I + tDk

where t > 0 is a parameter, and Dk is a diagonal matrix with k ones and n − k zeros on its diagonal, while the
positions of the ones in Dk are randomized. As such, M has k diagonal elements taking the value 10 + t and
n − k taking 10. It is clear that any globally optimal rank-k nonnegative matrix factorization X̄Ȳ is a diagonal
matrix that retains the k largest diagonal elements of M at 10+ t and zeros out the other n−k diagonal elements
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at 10. For example, if the first k diagonal elements of M are 10 + t, then a globally optimal rank-k nonnegative
matrix factorization consists of

X̄ = (10 + t)
[
Ik×k

0

]
and Ȳ =

[
Ik×k 0

]
,

with the global minimum objective value

f(X̄, Ȳ ) = ‖X̄Ȳ −M‖2F /2 = (n− k)100/2.

For t = 1, 2, · · · , 20, we run each algorithm on 100 random instances and record the number of runs suc-
ceeding in reaching global optima within a prescribed accuracy. Specifically, a run is regarded as successful if
the returned solution (X,Y ) satisfies the criterion

‖XY −M‖2F − 100(n− k)
100(n− k)

≤ 10−2(t/10), (20)

that is, the relative error in objective as compared to a global optimum is within one percent times t/10. The
accuracy requirement is scaled by the factor t/10 because of the following reason. Let XY be diagonal and of
rank k with k − 1 diagonal elements coinciding with those of M at the value of 10 + t and another one equal to
10. Then the residue value at such a pair (X,Y ) is

‖XY −M‖2F = (n− k − 1)102 + (10 + t)2 = 100(n− k) + t(t+ 20),

corresponding to a left-hand side in (20) at [t(t + 20)/(n − k)]10−2 which is less than 10−2 when t and k are
relatively small, say for t ≤ 3 and k ≤ 30. The scaling factor t/10 precludes such kind of (X,Y ) from being
accepted as good approximations for small t values.

Out of many instances of such experiments, results for two typical runs were presented in Figure 6 where
rates of successful runs in approximating global optima, as defined in (20), were plotted for the three algorithms
and for t = 1, 2, · · · , 20. In both instances, the matrix sizes are m = n = 100. As can be seen from the picture
on the left, for k = 10 the rates of success generally increase as t increases. Although the performance of the
ADM algorithm dominated the other two algorithms for k = 10, its behavior became rather counter-intuitive
when k = 15 as can be seen from the picture on the right where the success rate drops as t passes 7.
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Figure 6: Success rates of global optimization for the 3 algorithms on diagonal test problems. For each t value
and each algorithm, 100 random trials were performed.
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Since the diagonal test matrices are not representative of any meaningful data, results from such experiments
may not be indicative of any strength or weakness of the tested algorithms. However, these results do suggest
that (1) under favorable conditions chances of getting global optima could potentially be quite high, particu-
larly for the ADM algorithm; and (2) algorithms may exhibit unexpected behavior under different conditions in
terms of approximating global optima. Further studies are needed to better understand issues related to global
optimization.

5 Concluding Remarks
With auxiliary variables and Lagrangian multipliers, and requiring setting a couple of parameters, the ADM
algorithm is slightly more involved than both the ALS and the Mult algorithms. Nevertheless, it is still quite
simple. More importantly, in our tests it has consistently and notably outperformed all the peers in comparison,
measured either in solution quality or speed, or in both aspects. The per-iteration complexity of the ADM
algorithm is mainly two matrix-vector multiplications when the approximation rank k is relatively small (as is
the case in most applications).

The ADM approach can be applied to other NMF-related models such as weighted NMF problems where
weighted Frobenius norms are used, semi-NMF problems where only one of the two factors is required to be non-
negative, and various regularized models such as `1-norm regularization for sparse factorizations. It is reasonable
to predict that the resulting algorithms should be competitive as is the case for the plain NMF problem.

Although from an empirical point of view the ADM approach applied to non-convex problems appears to
have robust convergence properties when penalty parameters are appropriately chosen, from a theoretical point
of view these properties remain poorly understood. An important issue concerns the likelihood of convergence
to global optima. For some classes of problems, convergence to global optima does appear to be highly probable
despite non-convexity. These topics should be of interest for further studies.
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Figure 3: Results on the 1200×1600 image Panda for rank k = 120, 60, 30, 15 (top to bottom) and for algorithms
SVD, ADM and Mult (left to right).
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