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Abstract

A unified convergence result is derived for an entire class of stationary iterative methods
for solving equality constrained quadratic programs or saddle point problems. This class is
constructed from essentially all possible splittings of the n×n submatrix residing in the (1,1)-
block of the (n+m)×(n+m) augmented matrix that would generate non-expansive iterations
in Rn. The classic multiplier method and augmented Lagrangian alternating direction method
are two special members of this class.

Keywords. Saddle point problem, quadratic program, splitting, stationary iterations, alternat-
ing direction augmented Lagrangian method, Q-linear convergence.

1 Introduction

First consider the equality constrained quadratic program:

min q(x) :=
1

2
xTAx− bTx s.t. Bx = c. (1)

where A ∈ Rn×n is symmetric and B ∈ Rm×n with m < n. The matrix A can be indefinite, but is
assumed to be positive definite in the null space of B. Without loss of generality, we assume that
B is of full rank m. The system of stationarity for the quadratic program (1) is

Ax+BT y − b = 0,

Bx− c = 0,

∗Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005, U.S.A.
(yzhang@rice.edu)

1



where x is the primal variable and y is the Lagrangian multiplier (or dual variable). In matrix form,
the system is (

A BT

B 0

)(
x

y

)
=

(
b

c

)
, (2)

which is commonly called the augmented system or saddle point system – a problem with a wide
range of applications in various areas of computational science and engineering. Numerical solu-
tions of this problem have been extensively studied in the literature; see the survey paper [1] for a
comprehensive review and a thorough list of references up to 2004.

The augmented lagrangian technique has been used to make the (1,1)-block of the saddle point
system positive definite. In this approach, an equivalent system is solved,

Ax+BT y − b+ γBT (Bx− c) = 0,

Bx− c = 0,

with a parameter γ > 0, which has the matrix form(
A+ γBTB BT

B 0

)(
x

y

)
=

(
b+ γBT c

c

)
. (3)

The following result is a well-known fact.

Proposition 1. Let A be symmetric positive definite in the null space of B. If A � 0, then A +

γBTB � 0 for γ ∈ (0,+∞); otherwise, there exists some γ̂ > 0 such that

γ ∈ (γ̂,+∞) =⇒ A+ γBTB � 0. (4)

1.1 Notation

For matrix M ∈ Rn×n, σ(M) denotes the spectrum of M and ρ(M) the spectral radius of M . For
symmetric M , λmax(M) (λmin(M)) is the maximum (minimum) eigenvalue of M . By M � 0

(M � 0), we mean that M is symmetric positive definite (semi-definite). For a complex number
z ∈ C, <(z) denotes the real part of z and =(z) the imaginary part.

2 A Class of Stationary Iterative Methods

In this section, we describe a class of stationary iterative methods for solving the saddle point prob-
lem (3) where the (1,1)-block has been made positive definite. However, we will re-parameterize
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the first equation and introducing another parameter into the the second. The equivalent system
under consideration is (

H(α) −BT

τB 0

)(
x

y

)
=

(
αb+BT c

τc

)
, (5)

where α, τ > 0 and
H(α) = αA+BTB � 0.

Comparing (5) to (3), we see that α = 1/γ and the multiplier y has been rescaled along with a sign
change. These changes are cosmetic except that one more parameter τ is introduced into (5).

Since the equation Bx = c is equivalent to QBx = Qc for any nonsingular Q ∈ Rm×m, B
and c in (5) can obviously be replaced by QB and Qc, respectively.

2.1 Splitting of the (1,1)-block

In our framework, the (1,1)-block submatrix H(α) in (5) is split into a “left part” L and a “right
part” R; that is,

H := αA+BTB = L−R. (6)

We drop the α-dependence from H , as well as from L and R, since α will always be fixed in our
analysis as long as H � 0 is maintained, even though it can also be varied to improve convergence
performance.

In this report, unless otherwise noted, splittings refer to those for the (1,1)-block submatrix H
rather than for the entire (2 × 2)-block augmented matrix of the saddle point problem. Moreover,
we will associate a splitting with a left-right pair (L,R). Simplest examples of splittings include

L = H, R = 0;

or after partitioning H into 2 by 2 blocks,

L =

(
H11 0

0 H22

)
, R = −

(
0 H12

H21 0

)
,

which is of block Jacobi type; or

L =

(
H11 0

H21 H22

)
, R = −

(
0 H12

0 0

)
, (7)

which is of block Gauss-Seidel type. We note that when H � 0 and (L,R) is a Gauss-Seidel
splitting, either element-wise or block-wise, it is known that ρ(L−1R) < 1.
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In general, one can first partition H into p-by-p blocks for any p ∈ {1, 2, · · · , n}, then perform
a block splitting. In addition, splittings can be of SOR type involving an extra relaxation parameter.
To keep notation simple, however, we will not carry such a parameters in a splitting (L,R) since it
does not affect our analysis.

2.2 A stationary iteration class

We consider a class of stationary iterations consisting of all possible splittings (L,R) for which
the spectral radius of L−1R does not exceed the unity (plus an additional technical condition to be
specified soon). This class of stationary iterative methods, that we call the {L,R}-class for lack of
a more descriptive term, iterates as follows:

xk+1 = L−1
(
Rxk +BT (yk + c) + αb

)
, (8a)

yk+1 = yk − τ
(
Bxk+1 − c

)
, (8b)

where (L,R) is any admissable splitting and τ represents a step length in multiplier updates.
It is easy to see that the {L,R}-class iterations (8) correspond to the following splitting of the

(2× 2)-block augmented matrix in system (5):(
H −BT

τB 0

)
=

(
L 0

τB I

)
−

(
R BT

0 I

)
. (9)

Therefore, the resulting iteration matrix is

M(τ) :=

(
L 0

τB I

)−1(
R BT

0 I

)
=

(
L−1R L−1BT

−τBL−1R I − τBL−1BT

)
. (10)

It is worth observing that the results of the present paper still hold if in the right-hand side of (9)
the identity matrix in the (2,2)-blocks is replaced by any symmetric positive definite matrix [7].

From the well-known theory for stationary iterative methods for linear systems, we have

Proposition 2. A member of the {L,R}-class convergesQ-linearly from any initial point if and only
if the corresponding iteration matrix M(τ) satisfies, for some τ > 0,

ρ(M(τ)) < 1. (11)

In this report, we establish that, under two mild assumptions, condition (11) holds for the entire
{L,R}-class.
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2.3 Classic multiplier and ADM methods

The trivial splitting (L,R) = (H, 0) gives the classic multiplier method [2, 3], and is also equiva-
lent to Uzawa’s method [6] applied to (3). In this case,

M(τ) =

(
0 H−1BT

0 I − τBH−1BT

)
,

and
ρ(M(τ)) = ρ

(
I − τBH−1BT

)
, (12)

leading to the well-known convergence result for the multiplier method.

Proposition 3. The Lagrangian multiplier method applied to the quadratic program (1) converges
Q-linearly from any initial point for τ ∈

(
0, 2/λmax(BH−1BT )

)
where H = αA + BTB � 0.

Moreover, when A � 0, τ ∈ (0, 2) suffices for convergence.

The classic multiplier method, or Uzawa’s method applied to (3), is a special and unique mem-
ber of the {L,R}-class, which requires solving systems involving the entire (1,1)-block submatrixH
with a different right-hand side from iteration to iteration. On the other hand, all other {L,R}-class
members only require solving systems involving the left part L which can be much less expensive
if L are chosen to exploit problem structures.

When the splitting of H is of the (2 × 2)-block Gauss-Seidel type as is defined in (7), the
associated {L,R}-class member reduces to the classic augmented Lagrangian alternating direction
method (AMD) [5, 4], for which convergence has been established for general convex functions not
restricted to quadratics. However, such general theory requires objective functions to be separable
with respect to the two block variables and convex in the entire space. Apparently no convergence
results are available, to the best of our knowledge, when the objective is inseparable or convex only
in a subspace, or the number of block variables exceeds two.

3 Convergence of the Entire Class

We present a unified convergence result for the entire {L,R}-class under two assumptions:

A1. H := αA+BTB � 0.

A2. H = L−R satisfies ρ(L−1R) ≤ 1 and condition (13) below.
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We know that Assumption A1 holds for appropriate α values if A ∈ Rn×n is positive definite
in the null space of B, see Proposition 1. We further require that L−1R have no eigenvalue of unit
modulus or greater except possibly the unity itself being an eigenvalue; that is,

max
{
|µ| : µ ∈ σ(L−1R) \ {1}

}
< 1. (13)

Now we present a unified convergence theorem for the entire {L,R}-class.

Theorem 1. Let {(xk, yk)} be generated from any initial point by a member of the {L,R}-class
defined by (8). Under Assumptions A1-A2, there exists η > 0 such that for all τ ∈ (0, 2η) the
sequence {(xk, yk)} converges Q-linearly to the solution of (1).

The proof is left to the next section after we develop some technical results. We note that the
convergence interval (0, 2η) is member-dependent. It can also depend on the value of parameter
α > 0 in H(α) = αA+BTB � 0.

It is worth noting that the theorem only requires L−1R, as a linear mapping in Rn, to be non-
expansive (plus a technical condition) rather than contractive. Convergence would not necessarily
happen if one kept iterating on the primal variable x only. However, timely updating the multiplier
y helps the pair converge together.

4 Technical Results and Proof of Convergence

We first derive some useful technical lemmas. Let λ(τ) be an eigenvalue of M(τ), i.e.,

λ(τ) ∈ σ(M(τ)). (14)

The eigenvalue system corresponding to λ is(
L−1R L−1BT

−τBL−1R I − τBL−1BT

)(
u(τ)

v(τ)

)
= λ(τ)

(
u(τ)

v(τ)

)
, (15)

where (u, v) ∈ Cn × Cm is nonzero. For simplicity, we will often skip the τ -dependence of the
eigen-pair if no confusion arises.

Lemma 1. If ρ(L−1R) ≤ 1, then
ρ(M(0)) = 1.

Under condition (13) the maximum eigenvalue of M(τ) in modulus, λ(τ), satisfies

lim
τ→0

λ(τ)− 1

λ(τ)
= 0. (16)
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Proof. From the definition of M(τ) in (10),

M(0) =

(
L−1R L−1BT

0 I

)
.

Hence by our assumption ρ(M(0)) = max(1, ρ(L−1R)) = 1 ∈ σ(M(0)). The second part
follows from the continuity of eigenvalues as functions of matrix elements and condition (13).

Lemma 2. Let A be positive definite in the null space of B and α > 0, or H = αA+ BTB � 0.
For any τ > 0,

1 /∈ σ(M(τ))

where M(τ) is given in (10).

Proof. We examine the eigen-system (15). Rearranging the first equation of (15), we have

(λL−R)u = BT v. (17)

Multiplying the first equation by τB and adding to the second of (15), after rearranging we obtain

(1− λ)v = λτBu. (18)

Suppose that λ = 1. Then (18) implies Bu = 0. By the definition (6), equation (17) reduces to

(L−R)u ≡ (αA+BTB)u = BT v.

Multiplying the above equation by u∗ and invoking Bu = 0, we arrive at u∗Hu = u∗Au = 0,
contradicting to the assumption of the lemma.

Lemma 3. Let (λ, (u, v)) be an eigen-pair of M(τ) as is given in (15) where λ /∈ {0, 1} and
Bu 6= 0, then

λ = 1− τ
(

u∗Hu

u∗BTBu
+
λ− 1

λ

u∗Ru

u∗BTBu

)−1
. (19)

Proof. It follows readily from (18) that

v =
λτ

1− λ
Bu. (20)

Substituting the above into (17) and in view of (6), we have

(λH + (λ− 1)R)u =
λτ

1− λ
BTBu,
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or after a rearrangement, (
H − τ

1− λ
BTB

)
u =

1− λ
λ

Ru. (21)

Multiplying both sides of (21) by u∗, we have

u∗Hu− τ

1− λ
u∗BTBu =

1− λ
λ

u∗Ru.

Since u∗BTBu 6= 0, the above equation can be rewritten into

τ

1− λ
=

u∗Hu

u∗BTBu
+
λ− 1

λ

u∗Ru

u∗BTBu
. (22)

Solving for the λ on the left-hand side of (22) while fixing the ones on the right, we obtain the
desired result where the denominator term must be nonzero.

Lemma 4. Let τ, κ ∈ R and z = <(z) + i=(z) ∈ C such that κ+ <(z) > 0. Then

τ ∈ (0, 2(κ+ <(z))) ⇐⇒
∣∣∣∣1− τ

κ+ z

∣∣∣∣ < 1. (23)

Moreover, τ = κ+ <(z) minimizes the above modulus so that

min
τ

∣∣∣∣1− τ

κ+ z

∣∣∣∣ =

∣∣∣∣1− κ+ <(z)

κ+ z

∣∣∣∣ =
|=(z)|
|κ+ z|

. (24)

Proof. By direct calculation,∣∣∣∣1− τ

κ+ z

∣∣∣∣2 = 1− τ 2(κ+ <(z))− τ
|κ+ z|2

=
(κ+ <(z)− τ)2 + =(z)2

(κ+ <(z))2 + =(z)2
, (25)

from which both (23) and (24) follow.

Now we are ready to prove Theorem 1.

Proof. The proof follows from Lemmas 1, 3 and 4, while Lemma 2 is implicitly used.
Let (λ(τ), (u(τ), v(τ))) be an eigen-pair ofM(τ) corresponding to an eigenvalue of maximum

modulus. Clearly, λ(τ) /∈ {0, 1}. We need to prove that |λ(τ)| < 1 for some values of τ > 0. In
the rest of the proof, we often skip the dependence on τ .

We consider two cases: Bu = 0 and Bu 6= 0. If Bu = 0, then (18) implies v = 0, and (17)
implies that (λ, u) is an eigen-pair of L−1R. Therefore, |λ| < 1 by Assumption A2. Now we
assume that Bu 6= 0. By Lemmas 3 and 4, |λ(τ)| < 1 if and only if the following inclusion is
feasible,

τ ∈ (0, 2Θ(τ)) , (26)
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where

Θ(τ) :=
u∗Hu

u∗BTBu
+ <

(
λ− 1

λ

u∗Ru

u∗BTBu

)
=

u∗u

u∗BTBu

(
u∗Hu

u∗u
+ <

(
λ− 1

λ

u∗Ru

u∗u

))
(27)

Under Assumption A2, we know from (16) in Lemma 1 that 1− 1/λ(τ)→ 0 as τ → 0. Hence, in
view of the boundedness of u∗Ru/u∗u, for any δ ∈ (0, 1) there exists ξδ > 0 such that

<
(
λ− 1

λ

u∗Ru

u∗u

)
≥ −

∣∣∣∣λ− 1

λ

∣∣∣∣ |u∗Ru|u∗u
≥ −δλmin(H), ∀ τ ∈ (0, 2ξδ). (28)

We now estimate Θ(τ) for τ ∈ (0, 2ξδ) from (27) and (28),

Θ(τ) ≥ λmin(H)− δλmin(H)

λmax(BTB)
= (1− δ) λmin(H)

λmax(BTB)
:= θδ > 0, ∀ τ ∈ (0, 2ξδ). (29)

It follows from (29) that inclusion (26) indeed holds for all τ ∈ (0, 2η) where

η := min(ξδ, θδ). (30)

This completes the proof.

In view of the second part of Lemma 4, if τo solves the equation τ = Θ(τ), then the best
achievable rate of convergence (for a given α) is no greater than

|=(z(τo))|
|u(τo)∗Hu(τo) + z(τo)|

=

(
1 +

(u(τo)
∗Hu(τo) + <(z(τo))

2

=(z(τo))2

)− 1
2

< 1, (31)

where z(τ) := λ(τ)−1
λ(τ) u(τ)∗Ru(τ). The formula is of course impractical to compute, but might

serve as an estimation tool.

5 Remarks

The {L,R}-class, defined by (8), is constructed from splitting the (1,1)-block of the saddle point sys-
tem matrix that includes, but is not limited to, all known convergent splittings for positive definite
matrices, offering adaptivity to problem structures with guaranteed convergence.

Those {L,R}-class members associated with block Gauss-Seidel splittings are natural exten-
sions to the classic ADM specialized to quadratics. In contrast to the existing general convergence
theory for ADM, Theorem 1 does not require separability, nor convexity in the entire space, im-
poses no restriction on the number of block variables, and gives a Q-linear rate of convergence. It
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should be of great interest to extend these properties beyond quadratic functions, which is a topic
to be addressed in another report.

The convergence of certain members of the {L,R}-class has been studied in [9] under the as-
sumption that L is symmetric positive definite. In [8], a special case corresponding to the SOR-
splitting has been analyzed.
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