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Abstract

Hyperspectral data processing typically demands enormcoogputational resources in terms of storage, com-
putation and 1/O throughputs, especially when real-timecessing is desired. In this paper, we investigate a low-
complexity scheme for hyperspectral data compression ecmhstruction. In this scheme, compressed hyperspectral
data are acquired directly by a device similar to the simif@! camera [5] based on the principle of compressive
sensing. To decode the compressed data, we propose a nairpesicedure to directly compute the unmixed abundance
fractions of given endmembers, completely bypassing bighplexity tasks involving the hyperspectral data cube
itself. The reconstruction model is to minimize the totati@don of the abundance fractions subject to a pre-
processed fidelity equation with a significantly reduceeé sénd other side constraints. An augmented Lagrangian type
algorithm is developed to solve this model. We conduct estterumerical experiments to demonstrate the feasibility
and efficiency of the proposed approach, using both syutliztia and hardware-measured data. Experimental and
computational evidences obtained from this study inditaaé the proposed scheme has a high potential in real-world
applications.

Index Terms

Hyperspectral imaging, data unmixing, compressive sgnsotal variation, augmented Lagrangian method, fast
Walsh-Hadamard transform.

|. INTRODUCTION

Hyperspectral imaging is a crucial technique and a powedal to identify and quantify distinct material
substances from (often remotely) observed spectral dadeaploys hyperspectral sensors to collect two dimensional
spatial images over many contiguous spectral bands camgaihe visible, near-infrared, and shortwave infrared

spectral bands [10]. Hyperspectral imaging has a wide rafiggplications such as terrain classification, mineral
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detection and exploration [13], [14], pharmaceutical detfeiting [15], environmental monitoring, and military
surveillance [16].

Typically, hyperspectral imaging is of spatially low restbn, in which each pixel, from a given spatial element
of resolution and at a given spectral band, is a mixture oéishdifferent material substances, termed endmembers,
each possessing a characteristic hyperspectral signdtlireHyperspectral unmixing is to decompose each pixel
spectrum to identify and quantify the relative abundanoceaah endmember. In the linear mixing model, interactions
among distinct endmembers are assumed to be negligible {@#th is a plausible hypothesis in most cases.
Frequently, the representative endmembers for a giveresmenknowra priori and their signatures can be obtained
from a spectral library (e.g., ASTER and USGS) or codeboakit@ other hand, when endmembers are unknown
but the hyperspectral data is fully accessible, many algms exist for determining endmembers in a scene,
including N-FINDR [18], PPI (pixel purity index) [17], VCAWertex component analysis) [19], SGA (simplex
growing algorithm) [20]; NMF-MVT (nonnegative matrix famization minimum volume transform) [21], SISAL
(simplex identification via split augmented Lagrangiar§][2MVSA (minimum volume simplex analysis) [24], and
MVES (minimum-volume enclosing simplex) [23].

Because of the their enormous volume, it is particularl§iaift to directly process and analyze hyperspectral data
cubes in real time or near real time. On the other hand, hppetsal data are highly compressible with two-fold
compressibility: 1) each spatial image is compressibld, 2nthe entire cube, when treated as a matrix, is of low
rank. To fully exploit such rich compressibility, in this per we propose a scheme that never requires to explicitly
store or process a hyperspectral cube itself. In this schelata are acquired by means of compressive sensing
(CS). The theory of CS shows that a sparse or compressibilalsign be recovered from a relatively small number
of linear measurements (see, for example, [1], [2], [3])p&mticular, the concept of the single pixel camera [5] can
be extended to the acquisition of compressed hyperspelztal which will be used in our experiments. The main
novelty of the scheme is in the decoding side where we comiiétt@ reconstruction and unmixing into a single
step of much lower complexity. At this point, we assume tlhat involved endmember signatures are known and
given, from which we then directly compute abundance foadti In a later study we will extend this approach
to blind unmixing where endmember signatures are not plcisnown a priori. For brevity, we will call the
proposed procedureompressive sensing and unmixiogCSU scheme.

In the following paragraphs, we introduce the main contidns, and the notation and organization of this paper.

A. Main Contributions

We propose and conduct a proof-of-concept study on a lowptexity, compressive sensing and unmixing (CSU)
scheme, formulating a unmixing model based on total vama(iTV) minimization [4], developing an efficient
algorithm to solve it, and providing experimental and nuigerevidence to validate the scheme. This proposed
scheme directly unmixes compressively sensed data, bypgatise high-complexity step of reconstructing the
hyperspectral cube itself. The validity and potential ¢ firoposed CSU scheme are demonstrates by experiments

using both synthetic and hardware-measured data.



B. Notations

We introduce necessary notations here. Suppose that inem givene there exist. significant endmembers,
with spectral signatureﬁ)iT € R™, fori = 1,...,n., wheren, > n. denotes the number of spectral bands.

Let z; € R™ represent the hyperspectral data vector atittie pixel andh! € R™e represent the abundance

fractions of the endmembers for anye {1,...,n,}, wheren, denotes the number of pixels. Furthermore, let
X = [z1,...,2,,]7 € R™*™ denote a matrix representing the hyperspectral ciibe= [w;,...,w, |7 €
R™>m the mixing matrix containing the endmember spectral sigreat andH = [hq, .. .,th]T € R"epx7e g

matrix holding the respective abundance fractidiysdenotes the column vector of all ones with lengthVe use
A € R™*"» to denote the measurement matrix in compressive sensiagadguisition, and” € R™*™ to denote

the observation matrix, where < n, is the number of samples for each spectral band.

C. Organization

The paper is organized as follows. Section Il focuses on éitsiting our unmixing model. Section Il introduces
a data preprocessing technique to significant reduce tHalgmmosize and thus complexity. Section IV describes a
variable splitting, augmented Lagrangian algorithm folvisg the proposed unmixing model. Section V presents
numerical results based on synthetic data. Section VI tesca hardware setup and its implementation to collect
compressed hyperspectral data, presents and analyzesrtbenpance of the CSU scheme on a hardware-measured

dataset. Finally, Section VIl gives concluding remarks.

Il. PROBLEM FORMULATION

Assuming negligible interactions among endmembers, tipetspectral vectar; at thei-th pixel can be regarded
as a linear combination of the endmember spectral sigratamed the weights are gathered in a nonnegative
abundance vector;. Ideally, the components df;, representing abundance fractions, should sum up to ursty;
the hyperspectral vectors lie in the convex hull of endmanspectral signatures [19]. In short, the data model has
the form

X=HW, Hl, =1,, and H>0. (1)

However, in reality the sum-to-unity condition di does not usually hold due to imprecisions and noise of variou
kinds. In our implementation, we imposed this condition gntketic data, but skipped it for measured data.
Since each column oK represents a 2D image corresponding to a particular spéetral, we can collect the
compressed hyperspectral datae R *"» by randomly sampling all the columns &f using the same measurement
matrix A € R™*"», wherem < n,, is the number of samples for each column. Mathematicaltydita acquisition
model can be described as
AX =F. 2

Combining [1) and[{2), we obtain constraints

AHW = F, H1, =1,, and H>0. ©)



For now, we assume that the endmember spectral signatufésane known, our goal is to find their abundance
distributions (or fractions) inH, given the measurement matrik and the compressed hyperspectral d&taln
general, systenf]3) is not sufficient for determinifig necessitating the use of some prior knowledge albin
order to find it.

In compressive sensing, regularizationdyyminimization has been widely used. However, it has been ecagly
shown that the use of TV regularization is generally moreaatkgeous on image problems since it can better
preserve edges or boundaries in images that are esserdiactdristics of most images. TV regularization puts
emphasis on sparsity in the gradient map of the image andtab&iwhen the gradient of the underlying image is
sparse [2]. In our case, we make the reasonable assumpéibthéngradient of each image composed by abundance
fractions for each endmember is mostly and approximatedgeuvise constant. Therefore, we propose to recover

the abundance matrikl by solving the following unmixing model:

min S TV(He;) st AHW =F, H1,, =1,,, H >0, @)

HER"pXme £
Jj=1

wheree; is the j-th standard unit vector iR,
TV(He;) £ ) || Di(He)). ()
i=1

|||l is the2-norm inR?, andD; € R?*"» denotes the discrete gradient operator atiitiepixel. Since the unmixing

model directly uses compressed datawe will call it a compressed unmixingodel.

Ill. SVD PREPROCESSING

The size of the fidelity equatiod HWW = F'in @) is m x n, wherem, although less tham, in compressive
sensing, can still be quite large, angl, the number of spectral bands, typically ranges from huiglte thousands.
We propose a preprocessing procedure based on singula daltomposition of the observation matiix to
decrease the size of the fidelity equations frenx n; to m x n.. Since the number of endmembeisis typically
up to two orders of magnitude smaller thap, the resulting reduction in complexity is significant, puteally
enabling near-real-time processing speed. The proposgaquessing procedure is based on the following result.

Proposition 1:Let A € R™*" and W € R"<*™ be full-rank, andF € R™*™ pe rankn, with n, <
min{ny, n,, m}. Let F = U.X.V.I be the economy-size singular value decompositiod’ofthere s, € R™e*"e
is diagonal and positive definité], € R™*" andV, € R™*"< both have orthonormal columns. Assume that
rank WV,) = n., then the two linear systems below fr ¢ R"»*"< have the same solution set; i.e., the equivalence
holds

AHW =F <= AHWYV, =U.X.. (6)
Proof: Denotes# = {H : AHW = F} ands% = {H : AHWV, = U.X.}. GivenF = U, % VI, it is
obvious thatq C 4. To shows# = J#, it suffices to verify that dirtv7]) = dim(23).



Let “vec” denote the operator that stacks the columns of aixnat form a vector. By well-known properties of

Kronecker product&”, AHW = F' is equivalent to
(WT @ A)vecH = vecF, (7)
whereW? @ A € R(wm)x(nens) - and
rank W7 @ A) = rankW)rank A) = n.m. (8)
Similarly, AHWYV, = U, is equivalent to
(WV)' @ A)vecH = vedU,.X.), (9)
where (WV,)T @ A € R(rem)x(nenp) and, under our assumption raikV,) = n.,
rank (WV.)T @ A) = rank WV, )rank A) = n.m. (10)

Hence, rankV T @ A) = rank (WV,)T ® A), which implies the solution sets dil(7) arid (9) have the sanmedsion;
i.e., dims4) = dim(J%). SincesA C %, we conclude that?] = 4. [ ]
This proposition ensures that under a mild condition thericeg 1/ and F' in the fidelity equatiolMdHW = F
can be replaced, without changing the solution set, by thehnamaller matricesV'V, and U.%., respectively,
potentially leading to multi-order magnitude reductionsequation sizes.
Suppose thaf is a observation matrix for a rank- hyperspectral data matriX. Then £ = AHW for some
full rank matricesf € R"»*" andW e R"*"_ Clearly, the rows of// span the same space as the columns of
V. do. Therefore, the condition raV,) = n. is equivalent to rar(lWWT) = n., which definitely holds for
W = W. It will also hold for a randoni¥ with high probability. Indeed, the condition rafik'V.) = n. is rather
mild.
In practice, the observation matrix usually contains model imprecisions or random noise, amdéés unlikely
to be exactly rank.. In this case, truncating the SVD éfto rank+, is a sensible strategy, which will not only serve
the dimension reduction purpose, but also a denoising gerpecause the SVD truncation annihilates insignificant
singular values off' likely caused by noise. Motivated by these consideratiares,propose the following SVD

preprocessing procedure.

Algorithm 1 (SVD Preprocessing):
Input F, W andn,.
Do the following:
compute the ranky, principal SVD: F ~ U.% . V.I;
overwrite datalv. «— WV, andF «— U.,X,;
End
Output F andW.




IV. ALGORITHM

Our computational experience indicates that, at leastferproblems we tested so far, to obtain good solutions

it suffices to solve a simplified compressed unmixing modat tmits the nonnegativity off,

mI}nZTV(Hej) st. AHW =F, H1, =1, . (11)

j=1

For simplicity, we will discuss our algorithm for the aboveodel which was actually used in our numerical
experiments. In fact, in our experiments with hardware$nead data, we also omitted the second constraint above
since it would not help in the presence of sizable system égcipions and noise. It should also be emphasized
that in the compressed unmixing modell(11), the matridéésnd £ are the output from the SVD preprocessing
procedure. In particular, the size of the fidelity equatias been reduced te x n. from the original sizen x n;,
a factor ofn;/n. reduction in size.

The main algorithm we proposed here is based on the augmeatgdngian method framework and a variable
splitting formulation, which is an extension to the algonit TVAL3 [6]. Wang, Yang, Yin, and Zhang [7] first
introduced the splitting formulation into TV regularizati problems, and applied a penalty algorithm to the
formulation. Then Goldstein and Osher [8] added Bregmanlagization into the formulation, producing a faster
algorithm since it is equivalent to augmented Lagrangiartiplier method. In 2009, Li, Zhang, and Yin also
employed this set of ideas and developed an efficient TV eggaltion solver TVAL3.

To separate the discrete gradient operator from the nderdiftiable TV term, we introduce splitting variables
vij = D;j(Hej) fori=1,...,n, andj = 1,...,n.. Then [I1) is equivalent to

min Z lvij| st Di(Hej) =wvij, Vi, j, AHW =F, H1, =1, . (12)
3
The augmented Lagrangian function fBrl(12) can be written as
«
La(Hvy) &> {HUz'jH — A} (Di(Hejz) —vij) + 5 1 Di(Hej) — Uin%} - (13)
i.J

(AW — P+ D AHW — I, 7 (L, ~ 1) + DI, 1,03,

where \;;, 11, v are multipliers of appropriate sizes, and3,~v > 0 are penalty parameters corresponding to the
three sets of constraints iR12), respectively. For byevie have omitted the multipliers in the argument list of
La.

We apply the augmented Lagrangian method (see Hesteneaf@3Powell [26]) on[[dI2) which minimizes the
augmented Lagrangian functiahy for fixed multipliers, then updates the multipliers. Speaifly, in our case the

multipliers are updated as follows. For all< i < n, and1 < j < n,,

Xij — Xij —a(Di(Hej) —viz), II «— II=BAHW = F), v «— v—~(HLl, —1,,). (14)



A. Alternation Minimization

To minimize L4 (H, v;;) efficiently, we employ an alternating minimization scherme;, minimizingL 4 (H, v;;)
with respect tov and H, one at a time, until convergence is achieved. The miningagbroblem with respect to

vi;'s is separable and has closed-form solutiofjsaccording to the well-known shrinkage formula:

1 0
vi = max- |05 — —,0 p —L—, (15)
s (R
where
Aij
91']' é Di(Hej) — ?J (16)

On the other hand, minimizing the augmented Lagrangian respect toH can be excessively costly for large-sale
problems. Fortunately, in the alternating minimizatiohesme, it it unnecessary to carry out such a minimization step
to a high accuracy. All we need is to sufficiently decreasatigmented Lagrangian function. In our implementation,

we take only one gradient step dh from the current iterate; i.e.,
H « H-7G(H), a7)

whereG(H) denotes the gradient a4 (H, v;;) with respect toH, which can be derived as

G(H) =Y {-DI\je] + aD] (DiHe; —vij)el }—ATIIW T+ BAT(AHW —F)W" =1} +~(H1,, ~1,,)1} .
v (18)
The only remaining issue is to choose the step lengih (I4), for which we adapt a scheme used in [6].
In this scheme, the step sizeis determined by a non-monotone line search scheme [28]tisfysa so-called
“non-monotone Armijo condition”. We start from an initiglep proposed by Barzilai and Borwein [27] for gradient
type method that we will call a BB-step, then use a backtragkechnique to search for a step satisfying the
non-monotone Armijo condition. To sum up, the alternatingimization algorithm for minimizing the augmented

Lagrangian function[{d3), for fixed multipliers, is as fails.

Algorithm 2 (Alternating Minimization):

Input starting pointH and all other necessary quantities.

While “inner stopping criterid are not satisfied,
computev;; by theshrinkage formula(3);
compute theBB stepr (see [27]), and set € (0,1);
While "non-monotone Armijo conditidns not satisfied,

Backtracking:r = p 7;

End
updateH by formula [I7T);

End




Output H andwv;; for all 4, j.

B. Overall Algorithm

Putting all components together, our algorithm for solving compressed unmixing modEll11) can be summa-

rized as follows.

Algorithm 3 (Compressed Unmixing):

Input dataF’ and W, and penalty parameters 3,~ > 0.

Preprocesd” and W by Algorithm[d;

Initialize multipliers A;;, I1, v, and variable .

While “outer stopping criteria are not satisfied,
update variables;; and H by Algorithm[2;
update multipliers\;;, I, v by formulas in [IH);

End

Output H.

The complexity of Algorithn{B at each iteration is dominatgdtwo matrix multiplications involvingV” ® A
and its transpose, respectively. In the next two sectiomsywll demonstrate the effectiveness of the algorithm in
several sets of numerical experiments.

In Algorithm [3, the outer stopping criteria can be specifiedddl on either relative change of variables or the
optimality conditions of the compressed unmixing model) (M/hile the latter is more rigorous, it is also more
costly. In our experiments, we used relative change of ksain both outer and inner stopping criteria. Specific

parameter settings and initial values used our experimaetgiven in the next section.

V. EXPERIMENTAL RESULTS. SYNTHETIC DATA
A. Setup of Experiments

To demonstrate the feasibility, practicality and potdrafahe proposed CSU scheme, We will present numerical
results from applying the proposed CSU scheme to two typedatd. In this section, results are obtained on
simulated or synthetic datasets. In the next section, weigeaesults from a much more realistic simulation where
compressed hyperspectral data were directly measured hydavare apparatus.

We implemented the CSU scheme in a Matlab code which is stilhaarly stage of development. All numerical
experiments reported in this paper were performed on a SONBNW¥Z290 laptop running Windows 7 and

MATLAB R2009b (32-bit), equipped with a 1.5GHz Intel Core 2CPU T5250 and 2GB of DDR2 memory.



In both types of experiments, we use randomized Walsh-Had&matrices as measurement matricds,
considering that they permit fast transformation and eamylware implementation. A Walsh-Hadamard matrix
is randomized by choosing. random row from it and applying a random permutation to itsicms.

In Algorithm[3, the multipliers);;, II, andv are always initialized t®; the backtracking parameter js= 0.6;
the penalty parameters, 3, and~ were selected from a range 8% to 2%, according to estimated noise levels.
Despite of a lack of theoretical guidance, we have found tha not particularly difficult to choose adequate
values for these penalty parameters since the algorithnoti@verly sensitive to such values as long as they fall
into some appropriate but reasonably wide range. It takésexperience, and often a few trial-and-error attemps,

to find acceptable penalty parameter values for a given dapsoblems.

B. Test Results on Synthetic Data

In the first test, we generated compressed data accordiraydadquisition mode[13). We selectééndmembers
from the ASTER Spectral Library [30]: nontronite, ferroaite, trona, and molybdenite, whose spectral signatures
are shown in FigurEl2. A total af11 bands were selected in the range of 0.4 to 2.5 micrometeesdiEributions
of abundance fractions correspondingitendmembers were given in Figule 1 with a spatial resolutfovo< 64.
Figuredd anfll2 gives the “trué? andW, respectively, from which we generated an observationimatr= AHW
for some measurement matrik In addition, to test the robustness of the CSU scheme, iresexperiments we

added zero-mean Gaussian random noise with stand denvatido the observation matri¥'.
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Fig. 1. Synthetic abundance distributions. Fig. 2. Endmember spectral signatures.

In Figure[B, we plot relative errors in computed abundanaetiions versus measurement rate of compressed data
on 100 distinct testing points, with or without additive noise.elhverage elapsed time for these runs is less than
10 seconds. We observe that the CSU scheme attains relatirdess thanl % when measurement rate is greater
than 20% in both noisy and noise-free cases. This test empiricalligl@ges the convergence of the algorithm and
the feasibility of the proposed CSU scheme, which has irdpirs conducting further tests on larger and more

realistic problems.
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Fig. 3. Recoverability for noisy and noise-free cases.

In the second test, we generated a compressed data nhabixapplying the data acquisition modEgl (2) to the
publicly available HYDICE Urban hyperspectral data [31hieh containsl63 bands in a range frorfi.4 to 2.5
micrometers, after some water absorption bands, eachdhau7 x 307 resolution. According to the analysis of
this Urban data cube in [9], there are 6 significant endmesivethe scene — road, metal, dirt, grass, tree, and

roof, as is shown in Figue 4. The spectral signatures fosetfieselected endmembers are plotted in Fiddre 5.
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Fig. 4. “Urban” image and endmember selection. Fig. 5. Spectral signatures with water absorption bandsdidrzed.

Our computed unmixing result fro?5% measurements are given in Figlile 6, where six subfigurestdeei
computed distributions of abundance fractions for the sidneembers, respectively. It took about 215 seconds to

run the algorithm. Qualitatively, we see that features mahiginal image such as roads, plants, and buildings have
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Roof

Fig. 6. Computed abundance: solution obtained fiZiit of measurements.

been properly segmented by a visual comparison with FiguFedexample, a hunk of roof marked by number 6
in Figure[@ appears prominently in the lower-right subfigofé-igure[® for the abundance fractions of roof.
Figure[ shows the least squares solution from directlyisghdHW = F for H with 100% data, which
becomes an overdetermined linear system in this case. Gorgpaigure[® with Figurdld7, we observe that the
proposed CSU scheme, using 25% of the data, is capable ofnkegpportant features and most details, even
though the overall quality in computed abundance fractimpshe CSU scheme is slightly lower than that of the

least squares solution using 100% of the data.

VI. EXPERIMENTAL RESULTS. HARDWARE-MEASURED DATA
A. Hardware Implementation

This section contains experimental results using hardweeasured data. Figufd 8 shows the schematic of a
compressing sensing hyperspectral imaging system based digital micro-mirror device (DMD). This system
incorporates a micro-mirror array driven by pseudo-rangmatierns and one spectrometer. Similar to the single-
pixel camera setup [5], it optically samples incoherentgmaneasurements as dictated by the CS theory; then a
reconstruction algorithm is applied to recover the acguspatial image as well as spectral information.

The spectrometer (on the right) we employed is a USB4000 bga@dptics which features #48-element
linear array detector responsive fr@®0-1100 nm. The spectrometer and DMD (at the top) are synchronizéak
data when the pseudo-random pattern switches. For eachaspatiern, the measured data from the spectrometer

is represented as a linear vector with the lengtB®f8. The target (at the bottom) is illuminated by tv86W
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Road Metal

Fig. 7. Estimated abundance: least squares solution.

daylight lamps fromd5 degrees on both sides in order to achieve sufficiently umiflumination.

B. A Test on Real Data

In this test, we use compressed hyperspectral data callbgt¢he hardware apparatus described above with the
same type of measurement matricésas in the previous experiments. Since the light shined orotiject was
distributed into oveB600 spectral bands, the intensity was significantly weakenezhoh channel, a relatively high
level of noise became inevitable in the experiments. In ma@spects, this represents a realistic and revealing test
on the concept of the proposed CSU scheme.

Our target image is an image of color wheel, as is shown inrEil which is composed of various intensity
levels of three colors: yellow, cyan, and magenta. We setects uniformly distributed bands in the range of 0.4
to 0.75 micrometers, and resolution at each band 26#sx 256. For convenience, we also chose yellow, cyan,
and magenta as the three endmembers, though differenteshare certainly possible. In a separate experiment,
we measured the spectral signatures for the three colomshvene plotted in FigurEZ10. The parameters and initial
values used in this test by Algorithih 3 are the same as thaseifignl in SectiofiV=A.

The abundance fractions corresponding to the three endersmere computed froh0% measured data, and
are shown in FigurEZ11. The elapsed time to process the cesgmeinmixing was about 26 seconds. As we can
see, our model and algorithm detected, quite accuratedyatbas corresponding to each color at various levels of
brightness.

Figure[I2 givest slices of the computed hyperspectral cube, obtained byipiyiftg the estimated abundance
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Fig. 9. Target image "Color wheel”. Fig. 10. Measured spectral signatures of the three endnmembe

matrix H with W, corresponding to four different spectral bands or wavgtlen For comparison, FiguEel13 gives
four slices, corresponding to the same four spectral basds Eigure[ IR, of a computed hyperspectral cube that
were computed from the same 10% of the measured dataset/iomatsa time, by the 2D TV solver TVAL3 as
would be the case in the reconstruction of 2D images from cesged measurements in a standard CS setting.
In this setting, neither endmember signatures nor aburd&mactions was utilized. It is evident that the results
in Figure[I2 are much cleaner than those in Fidude 13. Applsrehis remarkable superiority of the proposed
CSU scheme is the consequence of two factors: 1) a thoroygbittion of both low-rankness and sparsity in 3D

hyperspectral data, 2) the denoising effects of the SVD npegssing.
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Fig. 11. Estimated abundance: CS unmixing solution frdific measurements.
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Fig. 12. Four slices computed by the proposed approach. Fig. 13. Four slices computed slice-by-slice by TV minintiza.

VII. CONCLUSIONS

This work is a proof-of-concept study on a compressive sgnand unmixing (CSU) scheme for hyperspectral
data processing that does not require forming or storingfalitsgize data cube. The CSU scheme consists of three
major steps: 1) data acquisition by compressive sensindat3) preprocessing by SVD; and (3) data unmixing by
solving a compressed unmixing model with total-variatiegularization on abundance fraction distributions.

In this first-stage study, we only consider the situation nghibe spectral signatures of the endmembers are either
precisely or approximately known. After performing the S\beprocessing, data sizes to be processed become
much smaller and independent of the number of spectral baxfficient algorithm has been constructed for
solving a compressed unmixing model based on the augmentgdihgian method and alternating minimization.

The proposed CSU scheme has been empirically, and rathemcorgly, validated using both synthetic data
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and measured data acquired by a hardware device similaretsitiyle-pixel camera [5]. Our numerical results
clearly demonstrate that compressively acquired datazefrsinging from 10% to 25% of the full size can produce
satisfactory results highly agreeable with the “groundhtfuThe process speed achieved so far, which can certainly
be further improved, seems to fall within a promising range.

It is certainly desirable to extend the work of this paper torenpractical situations where knowledge about
endmember spectral signatures are either very rough,yhighbmplete, or even totally missing, leading to the
much more difficult task of compressive sensing and blind iximg. In particular, the optimization models for this
task become non-convex. However, some recent successelvimgsnon-convex matrix factorization models, such

as [29] on matrix completion, offer hopes for us to conducthfer research along this direction.
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