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Abstract

Structure-enforced matrix factorization (SeMF) represents a large class of mathematical models ap-
pearing in various forms of principal component analysis, sparse coding, dictionary learning and other
machine learning techniques useful in many applications including neuroscience and signal process-
ing. In this paper, we present a unified algorithm framework, based on the classic alternating direction
method of multipliers (ADMM), for solving a wide range of SeMF problems whose constraint sets per-
mit low-complexity projections. We propose a strategy to adaptively adjust the penalty parameters which
is the key to achieving good performance for ADMM. We conduct extensive numerical experiments to
compare the proposed algorithm with a number of state-of-the-art special-purpose algorithms on test
problems including dictionary learning for sparse representation and sparse nonnegative matrix factor-
ization. Results show that our unified SeMF algorithm can solve different types of factorization problems
as reliably and as efficiently as special-purpose algorithms. In particular, our SeMF algorithm provides
the ability to explicitly enforce various combinatorial sparsity patterns that, to our knowledge, has not
been considered in existing approaches.

1 Introduction

1.1 A matrix factorization model

Matrix factorization has a long history as a fundamental mathematical tool in matrix analysis. Tradition-
ally, the term matrix factorization is used in an exact sense in reference to decomposing a matrix into an
equivalent product form. Well-known examples of such exact factorization include, but not limited to, LU,
QR, SVD and Cholesky factorizations. More recently, the term matrix factorization has also been widely

used in an inexact sense in reference to approximating a matrix by a product of two factors where certain
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structures are either encouraged or imposed on one or both of the factors, reflecting prior knowledges about
the desired factorization. Such approximate and structured matrix factorizations have found great utilities
in various data-related applications, such as in signal and image processing and in machine learning tasks,
primarily because they often help reveal latent features in a dataset.

To have a precise mathematical description, we let M € R™*" be a given data matrix. For example, M
may represent a sequence of n images each having m pixels. We now aim at approximating M by a product
of two factors, i.e., M ~ XY, where some prior knowledges on X € R™*P or Y € RP*", or both, are
available. To perform an approximate and structured matrix factorization, we consider the following general
optimization model

1}1{1}3 IM - XY|% st. XEX, Y. )

where || - || 7 is Frobenius norm, and X and ) are subsets of R™*? and RP*™, respectively. In model (1)), the
objective function measures data fidelity in a least-square sense, which is the most popular metric for data
fidelity although other measures are frequently used as well. In this model, prior knowledges are explicitly
enforced as two constraint sets X and )) whose members possess desirable matrix structures. The most
useful structures of this kind include, for example, nonnegativity and various sparsity patterns.

We note that in the literature unconstrained optimization models are widely used where prior knowledges
are handled through penalty or regularization functions added to the data fidelity term so that a weighted sum
of the two is to be simultaneously minimized. In unconstrained optimization models, it is generally the case
that desired structures are encouraged or promoted, but not exactly enforced as in a constrained optimization
model like (I)). Obviously, both types of formulations have their distinct advantages and disadvantages under
different circumstances.

The focus of this work is exclusively on studying a specific algorithmic approach to solving model (T).
This approach is applicable to a range of constraint sets X and ) that are easily projectable (more details
will follow later). Fortunately, as we will demonstrate, in many practically relevant applications constraint
sets X and ) are indeed easily projectable.

We will call model (1)) a structure-enforced matrix factorization (or SeMF) model, partly to distinguish it
from models where structures are only encouraged or promoted like in unconstrained optimization models.
Generally speaking, model (I]) is a non-convex optimization problem that could allow a large number of non-
global local minima. In this case, it is well understood that a theoretical guarantee for a global minimum is
extremely difficult or impossible to obtain. In this work, our evaluation of algorithm performance is solely

based on empirical evidence, i.e., computational results obtained from controlled numerical experiments.

1.2 Related Works

Recently, numerous inexact and structured matrix factorization problems have arisen from various applica-

tions, including Matrix Completion, Principal component analysis (PCA), Sparse PCA, nonnegative matrix



factorization (NMF), Dictionary Learning, to name a few. Many of these factorizations can be represented
by the SeMF model (I)) with different structure constraints.

Non-negative Matrix Factorization (NMF) [1]] is a common matrix decomposition method for finding
meaningful representations of nonnegative data. NMF has been proven useful in dimension reduction of
images, text data and signals, for example. The most popular data fidelity function in NMF is Frobenius
norm squared, while another widely used function is the Kullback-Leibler divergence. There are many
algorithms developed for NMF in the past decades such as multiplicative updates [2, 3, 4f], alternating
least squares [} 5], and projected gradient type [6]. The work of Lee and Seung [7]] demonstrates that
NMF models tend to return part-based sparse representations of data, which has popularized the use of
and research on NMF-related techniques. In particular, various NMF-inspired formulations add different
regularization or penalty terms to promote desired properties, such as sparsity patterns in Y or orthogonality
between columns of X, in addition to nonnegativity (see [8, 9} 110, 11} 12} 13} [14], for example).

Approximate and structured matrix factorization problems also arise from dictionary learning, a data
processing technique widely used in many applications including signal processing, compressive sensing
and machine learning. Dictionary learning is to decompose a sampled dataset into a product of two factors,
say X and Y where X is called a dictionary and Y a representation of the data (or a coding matrix) under
the dictionary. As usual, some desired properties, such as nonnegativity and sparsity, can be imposed on
either or both factors. Again, most algorithms in dictionary learning are developed based on minimizing
data fidelity functions either with penalty/regularization terms or with explicit constraints (occasionlly with
both). For instance, the popular algorithm K-SVD [15]], which is widely used to learn dictionaries for sparse
data representation, is built on minimizing the Frobenius-norm data fidelity with explicit sparsity constraints
on each column of the coding matrix Y. For very large training sets and dynamic (time-dependent) training
data, a number of approximate matrix factorization models and so-called online algorithms have been pro-
posed that also either encourage or enforce sparsity structures by various means (see [12, |16, [17, 18], for
example).

To this date, there is already a vast literature on applications of approximate and structured matrix
factorization models to various areas along with special-purpose algorithms developed for solving those
models. Many of those models can be formulated as instances of the SeMF model if one uses the
squared Frobenius norm fidelity measure and imposes structures as constraints. In practice, many structures
are simple enough to allow “easy projections” that include, but are not limited to, nonnegativity, normality

and various sparsity patterns.

1.3 Main Contributions

The structure-enforced matrix factorization (SeMF) model studied in this paper is a general and unifying
mathematical model encompassing numerous problem classes arising from diverse application backgrounds.

The current state of affair is generally such that special-purpose algorithms are developed for solving indi-



vidual problem classes. This work is motivated in part by the recent success of the classic alternating
direction method of multiplier (ADMM or ADM) [19] 20] applied to compressive sensing (see [21} 22],
for example). Based on an extension of the classic ADMM (see more introduction in the next section), we
devise a unified algorithm for solving the general SeMF model that can be effectively implemented as long
as desired structure sets allow low-complexity projections (or approximate projections). Fortunately, most
commonly desired structures, including sparsity and nonnegativity, do possess this property of easy projec-
tion. Applicable to a wide range of problem classes, a major advantage of the proposed algorithm is its
extraordinary versatility unparalleled by most special-purpose algorithms. In addition, as will be discussed
later, our algorithm is capable of handling certain sparsity patterns of combinatorial nature that have not
been treated, as far as we know, by existing algorithms.

The classic ADMM methodology has theoretical guarantees of convergence for convex programs of two
separable variables (see [23) 24} 21, 25], for example). However, the general SeMF model is highly
nonconvex and non-separable for which even a moderately consistent practical performance is hard to ob-
tain without careful modifications to the classic framework, letting alone any theoretical guarantee of per-
formance. In this work, we develop a simple dynamic scheme to adaptively adjust the two most critical
parameters in the algorithm. This dynamic scheme enables the resulting algorithm to work quite well in
our extensive numerical experiments, in terms of both reliability and efficiency. Numerical results on sev-
eral problem classes indicate that, on most tested problems, our unified algorithm compares favorably with
state-of-the-art, special-purpose algorithms designed for individual classes. We believe that the new algo-
rithm adds a versatile and useful technique to the toolbox of solving structured matrix factorization problems

arising from a wide array of applications.

1.4 Organization

This paper is organized as follows. In Section 2, we propose to solve the Structured-enforced Matrix Factor-
ization (SeMF) problem (1) by extending the classic alternating direction method of multipliers (ADMM)
for convex optimization to the SeMF case with a strategy for adaptively updating penalty parameters which
is critical for the reliability and efficiency of the algorithm. In Section 3, we discuss the issue of projec-
tions onto several popular structure sets that need to be performed in the algorithm for solving relevant
problems. Section 4 contains several sets of computational results comparing the proposed algorithm with

several state-of-art, special-purpose algorithms. Finally, we concludes this paper in Section 5.



2 Alternating Direction Algorithm for SeMF

2.1 Classic ADMM Method

In a finite-dimensional setting, the classic alternating direction method of multiplier (ADMM or simply
ADM) is designed for solving separable convex programs of the form

i LA By = 2
xer)r;}yneyf(x)Jrg(y)s z+ By =c, 2)

where f and g are convex functions defined on closed convex subsets X and ) of finite-dimensional spaces,
respectively, and A, B and c are matrices and vector of appropriate sizes. The augmented Lagrangian
function of (2)) is

La(z,y,\) = f(z) +gly) + \'(Az + By — ¢) + gHAw + By — |3, 3)

where A represents a Lagrangian multiplier vector and 8 > 0 is a penalty parameter.

ADMM method [[19} 20] is an extension of the classic augmented Lagrangian multiplier method [26} 27,
28|]. It performs one sweep of alternating minimization with respect to = and y individually, then updates
the multiplier A; that is, at the iteration £k an ADMM scheme executes the following three steps: given
(xk, yk, )\k’)’

2 argmin £4(z, ¥, AP, (4a)
zekX

"1« argmin EA(ka, Y, )\k), (4b)
yey

)\k-i-l p )\k +’}/B(A$k+1 + Byk-‘rl . C), (40)

where v € (0,1.618) is a step length. It is worth noting that only involves f(x) in the objective and
only g(y), whereas the classic augmented Lagrangian multiplier method requires a joint minimization

with respect to both = and y, that is, substituting steps (4a)) and (b)) by

(fL’k+1, k+1) — argmin EA(x;y7)‘k)’

zeX yey

Y

which involves both f(x) and ¢(y) and is usally more difficult to solve. A convergence proof for the above
ADMM algorithm can be found in [29].
2.2 Extension to SeMF

To facilitate an efficient use of alternating minimization, we introduce two auxiliary variables U and V' and

consider the following model equivalent to (1)),

1
min_ <|M-XY|% st. X-U=0,Y -V=0,UcX, Ve, 6))
X, Y,UV 2



where U € R"™*P and V' € RP*™. The augmented Lagrangian function of (5)) is

La(X, YU, VA = 3||M — XY} +
(6)
Ae (X —U)+Te (Y =V)+ 51X ~ U5+ 5V ~ VI3,
where A € R™*P, I € RP*™ are Lagrangian multipliers and «, 5 > 0 are penalty parameters for the
constraints X — U =0and Y — V = 0, respectively, and the scalar product “e” of two equal-size matrices
A and B is the sum of all element-wise products, i.e., A e B = Z” a;i;bij.

The alternating direction method of multiplier (ADMM) for (5] is derived by successively minimizing
the augmented Lagrangian function £ 4 with respect to X, Y and (U, V'), one at a time while fixing others at
their most recent values, and then updating the multipliers after each sweep of such alternating minimization.
The introduction of the two auxiliary variables U and V makes it easy to carry out each of the alternating

minimization steps. Specifically, these steps can be written in the following form,

X, ~ argmin£L4(X,Y,U,V,A,TI), (7a)
Y, ~ arg;r(ninﬁA(XJr,Y,U,V,A,H), (7b)
Us = PalXs+A a), (7¢)
Ve = Py(Y, +11/8), (7d)
Ar = A+a(Xy Uy, (7e)
Iy = O+ p8(Y; - Vi), (7f)

where Py (Py) stands for the projection onto the set X' ())) in Frobenius norm, and the subscript “+” is used

to denote iterative values at the new iteration. Actually, we can write (7a) and exactly in closed forms,

Xy = (MY"+aU-A) (YY" +al) ™, (8a)
Vi = (XIX4+80)7H (XIM 48V —10). (8b)

Since the involved inverse matrices are both p X p, the corresponding linear systems are relatively inexpen-
sive for p < max(m,n). In this case, the dominant computational tasks at each iteration are the matrix
multiplications MY 7T and X7 M, together requiring about 4kmn arithmetic operations (scalar additions
and multiplications). On the other hand, when p is relatively large, then suitable approximation steps in
and (7b) may be more efficient.

Based on the formulas in (7)), we can implement the following ADMM algorithmic framework so long as
we can compute the projections in steps and (7d). An update scheme for v and 3, stated as Algorithm 2,
will be described in the next subsection.

We use the following stopping criterion: for given tolerance tol,

— X — X Y. - Y;
min{!fk fk+1‘7maX<H k k+1HF’ 1Y% k+1HF>} < tol ©)
| fx| | Xkl 7 1Yl 7
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Algorithm 1: ADMM Framework for SeMF

Input: M € R™*"™ integers p, maxiter > 0 and tol > 0
Output: X € R™*P and Y € RP*"

Set o, 5 > 0.

Set U, V, A, 11 to zero matrices of appropriate sizes, and Y to a random matrix.

for k = 1, maxiter do
Update (X, Y, U, V, A,II) by the formulas in (7).

if stopping criterion (@) is met then
| output X,Y, and exit.

end

Update penalty parameters « and (3 by Algorithm?2.
end

where fr, = ||M — XYx||r and X}, is the k-th iterate for the variable X, and so on. For the sake of
robustness, in our implementation we require that the above condition be satisfied at three consecutive
iterations. In other words, we stop the algorithm either when data fidelity does not change meaningfully
in three consecutive iterations or both variables X and Y do not change meaningfully in three consecutive
iterations.

We note that Algorithm 1, with fixed penalty parameter values, has been studied in [30] for a special case
of the SeMF model — the nonnegative matrix factorization (NMF) problem where the structure sets X and
Y contain element-wise nonnegative matrices of appropriate sizes. The current work is a further extension

beyond the work in [30].

2.3 Adaptive Penalty Parameter Update

It is well known that the penalty parameters « and 3 are the most important algorithmic parameters in the
ADMM framework. Even in the classic case of separable convex programming problem (2) where f and
g are convex functions and X and ) are convex sets, the value of the penalty parameter 5 can still greatly
affect the speed of convergence in practice, even though global convergence is guaranteed for any S > 0
in theory. This sensitivity to penalty parameter values, not surprisingly, only becomes much more severe
in our extended ADMM framework where the objective function is neither convex nor separable, and the
constraint sets are mostly nonconvex as well. In addition, there are three sets of variables, X,Y and (U, V)
that are minimized sequentially, as opposed to two sets in the classic case. Indeed, experiments indicate that
without getting both e and (3 in some proper ranges, the algorithm could hardly find any good solution close
to a global minimum, either going to a bad local minimum or becoming excessively slow or even stagnate.
In general, it is extremely difficult to be able properly choose fixed values for the penalty parameters o

and § for each class of problems due to widely varying characteristics of problem instances. Therefore, we



consider developing an adaptive scheme to update the penalty parameters during iterations. Short of solid
theoretical guidances, we have developed a set of heuristic rules and validated them by extensive numerical
experiments.

Firstly, we note that both U and V are feasible since U € X and V' € ) always hold in our algorithm
after the steps and (7d). If | M — UV || p is small, then XY = UV should represent a desired structured
factorization since M ~ XY. Now, if the quantity || M — UV || has been sufficiently decreased after every
iteration (or after every 3 iterations, say, for that matter), then we consider that the current values for both «

and [ are appropriate and will leave them unchanged. Specifically, we skip updating whenever
IM ~ UsVillr < (1= )IM ~ UV]|r (10)

where € € (0,1) is a small tolerance value. If the above test fails, then we update («, 3) according to three
different scenarios.
Case 1. Near feasibility of X and Y:
M-UV|F

||||]\4—XY||||F -1 <e. 11)
The above inequality indicates that, relatively speaking, there is little difference between the two terms
|M — XY||Fand |[M — UV|
@. Thus, most likely, (X, Y) is already nearly feasible due to large enough penalty parameters « and 3.

, implying that UV is almost the same as XY after projections and

In this case, we increase the weight of the fidelity violation term || XY — M||% in the augmented Lagrangian
function (6) by reducing both « and /3 in order to facilitate a significant decrease in fidelity violation at the
next iteration (or next a few iterations).

Case 2. Non-improved feasibility for at least one variable:
X4 =Usllp 2 [|[X = Ullp or Y3 =Vi|p > [|Y = V]p. (12)

In this case, we consider increasing « and/or 3 independently according to the changes in || X — U||r and
in ||Y — V||p. Take the former as an example. If | X — U||r does not decrease during the past several
iterations, then we increase its corresponding penalty parameter « in order to facilitate its decrease in future
steps to make X more feasible. The same argument applies to the term ||Y — V|| . We can expect that if we
keep increasing one or both penalty parameters the iterates will eventually reach Case 1 since (X, Y") will
be getting closer and closer to (U, V).

Case 3. Now both conditions and have failed. We consider the condition

IM = X4 Yillr = (1) |M = XY ¢ (13)

which implies that fidelity has not been improved sufficiently. In this case, we choose to decrease both
penalty parameters « and 3 to allow a faster reduction in fidelity violation. On the other hand, if condition

(T3)) does not hold, then both feasibility and fidelity are improving, but there is still a considerable gap



between ||M — XY||r and ||[M — UV || since condition does not hold. In this case, we choose to
increase « and [ in order to accelerate feasibility satisfaction and to narrow the gap between |[M — XY ||
and |[M — UV||p. In general, | M — UV is greater than | M — X Y| g since (U, V') is from restrictive
subsets while (X,Y") is “free”. Hence suddenly closing the gap between |M — XY ||r and |M — UV||p
usually means at least a temporary increase in the value of ||M — XY||p. An alternative option here is
to keep « and 8 unchanged which would also seem reasonable. We opt for increasing « and 3 based on
empirical observations that this strategy can often speed up convergence and help avoid to be trapped by
local minima.

The proposed adaptive penalty parameter update scheme is summarized in Algorithm 2.

Algorithm 2: Adaptive Penalty Parameter Update

Input: « and 3
Output: « and S, possibly updated
Set p1, v > 1 and select a small € € (0,1).

If is satisfied, then exit. (No update)
If is satisfied, set « = /v, f = /v, and exit. (Case 1)
If the first inequality in (T2) holds, set v = pcv. (Case 2a)
If the second inequality in holds, set 5 = uf3, and exit. (Case 2b)
If holds, set & = a/v and 5 = 3/v; (Case 3a)
otherwise, set « = pua and 8 = pf. (Case 3b)

For the sake of robustness, we evaluate all the conditions in Algorithm 2 in an average sense at every
q > 1 iterations rather than at every iteration. Namely, all the quantities involved are the average of ¢
iterations. In this paper, we always fix the number at ¢ = 5 throughout our experiments. Specifically, to

evaluate condition (I3)) at iteration 20, for example, we actually evaluate the inequality below:

20 15
Y IM - X YVillp > (1—¢) Y IM = X Yallr
k=16 k=11

which of course requires to save and update the involved average quantities.

Overall, the spirit of the above updating rules is to find a good balance between the progresses of fidelity
and feasibility; namely, between the three terms | M — XY||p, || X — U||r and ||Y — V|| ¢ in the augmented
Lagrangian function while also taking into account the value of | M/ — UV || . Although there is no theoret-
ical guarantee about the performance of our algorithm on the highly nonconvex problem (T)), our adaptive

update strategy does appear to have worked well on numerous test matrices and structure sets. In particular,



we present numerical results comparing the dynamical update scheme with fixed-value penalty parameters

in Section 4.

3 Projections onto Structure Sets

Our SeMF algorithm, i.e., Algorithm 1, requires to project a point X onto a structure set X, and Y onto Y
as well, at each iteration. Since either X or ) can be nonconvex, some clarifications are necessary.
3.1 Definition of Projection

For a given norm || - ||, the projection of = € R™ onto a subset S C R" is normally defined as
Ps(z) := argmin{||ly — z| : y € S}. (14)

It is well-known that when S is a nonempty, closed and convex subset, then the projection is uniquely defined
for any « € R"™. Short of convexity for S, however, the projection defined by can be non-unique at least
for some . Although this non-uniqueness hardly poses any real problem in practice, we need to extend the
definition of projection so that Ps(-) refers to any one of the minima if multiple minima exist in . In

addition, in defining projections we always use the Euclidean norm (or Frobenius norm for a matrix space).

3.2 Projections onto Some Simple Sets

We first briefly discuss projections onto several simple sets often appearing in applications that allow easy
projections. We will assume that the relevant spaces consist of matrices X. For simplicity, we only list
structures imposed on each column X; of X where X is the j-th column of X, but they can be equally

imposed on rows (or on other types of blocks) of X.
e Non-negativity: S = {X : X;; > 0,V4,j}.
['PS(X)]” = maX(O, Xzy)

e Sparsity: S = {X : ||X,|lo < k,Vj} where || - ||o is the number of nonzero elements in a vector.

In the above,

Xjllo < k means that the j-th column, X ;, contains at most k nonzero elements. With-
out loss of generality, assume that the absolute-value vector | X;| is already ordered in a descending

order so that | X;;| > |X;| > ---, and so on.

Xij> 7 < k‘,

(15)
0, otherwise.

[Ps(X)]ij = {

10



e Orthogonality to a fixed column: S = {X : X; 1 X,V j # j'} where j' is given.

X — XXX 1XTX, S
[PS(X)]] —_ J J ( j J ) i J J 3&] (16)
X, otherwise,
where we assume that X;; # 0 (otherwise no operation is necessary).
e Column Normalization: S = {X : | Xj|2 = 1,Vj}.
X.
[PS(X)] = 2 avja (17)
71X

where, without loss of practical generality, we assume that X; # 0 for all j (otherwise, a zero column

could be replaced by an arbitrary unit vector).

3.3 Projections onto Combinatorial Structure Sets

We demonstrate that some sparsity structure sets of combinatorial nature also permit easy projections. For
clarity, we do this by taking a simple, made-up example. Let us say that a fictitious DNA consists of 4
genes, A, B, C and D, each admitting 5 mutations. Therefore, there are totally 5% possible combinations,
corresponding to 20 basic building elements for this DNA each being a mutation of a distinct gene.

Any given sample of the DNA can be viewed as a linear combination of four elements coming from the
four distinct groups of five. As such, each expression has a sparse representation under a basis consisting of
the 20 basic elements. In such a sparse representation, each nonzero must be from a distinct group of five.
Let M be a given sample set of the DNA. We wish to find X and Y such that M ~ XY, where X consists
of the 20 basic elements each being expressed as a column of X, and each column of Y is a representation
(or signature) of a DNA sample under the basis X. Now we concentrate on the sparsity of Y.

We assign an index, from 1 to 20, to each gene mutation and group them so that A = {1,2,3,4,5},
B =1{6,7,8,9,10}, C ={11,12,13,14,15} and D = {16, 17,18,19,20}. By partitioning the 20 rows of

Y into four equal-size blocks, we write

By the properties described above, each column of Yx, K = A, B,C, D, can have at most one nonzero

component; that is, each block Yx belongs to the structure set
T =A{Z:1Zjllo < 1,¥j}, (18)
and the projection onto 7, Pr (), is defined as in . Meanwhile, the matrix Y belongs to the set

S={Y:YxeT,K=A,B,C,D} (19)

11



and the projection onto S is
Pr(
Pr

(20)

S

Ps(Y) = (
Pr(

| Pr(Yp

Obviously, the above projection can be easily extended to more complex situations. For example, each

.
)

|
)

block of Y may have a different number of rows, and the column sparsity of some blocks may be more
than one. To the best of our knowledge, so far there has been no algorithm designed to directly handle such
combinatorial properties.

In the above example we may very well demand that Y be nonnegative. This means that Y belongs to
the intersection of S defined in (I9) and the set of nonnegative matrices of proper sizes. Projections onto

such intersections will be discussed next.

3.4 Projections onto Certain Intersection Sets

We consider two intersection sets that will appear in our experiments later. We prove that the projections
onto these intersection sets can be carried out by successively performing one projections after another in a

specified order. Assume again that structures are imposed on each column of X.

Proposition 1. (Non-negativity + Sparsity)
Let §1 = {X : Xij > O,VZ,j} , Sy = {X : ||X]H0 < k’,V]}, S =8N38y, then

Ps(-) = Ps, (Psi () @21

Proof. Due to separability of Frobenius-norm square, without loss of generality we can assume that X has

only a single column. For convenience, we replace X by a vector z € R™, and use the following denotation:

T+ |x T — |z
’1" = (‘.%'1‘, T 7’xm’)T7 Ty = ’ " and €r_ = 7’ ‘
2 2
sothatz = x4+ + x_ and x{x_ = 0. There also holds
_ A . _
z4 = Ps,(x) £ argmin =
where the norm is the Euclidean norm by default. Let
Y € Ps, (Ps,(z)) = argmin [ly — z|. (22)
yES2
Clearly § € S§1 NS, and
(5 —a4)To_ =0, (23)

12



Forany y € §1 NSy, sincey > 0and z— < 0,
—(y—az ) e =—ylz_+ azip_x, =—ylz_+0>0. (24)
For any y € &1 N So, in view of the identity z = x4 + x_,

15 = 24 — 2| = 17 — 24 + [l=—|°

15 — x|

IN

ly = @il + lla- )1 < lly — 24 — 2|

= ly — =l

where the second equality follows from (23)), the first inequality from (22)), and the second inequality from
([24). This proves that Ps(z) = arg minyes ||y — z|]2 = Ps, (Ps, (x)). O

Proposition 2. (Sparsity + Positive Equal Nonzeros)
Let S = 8§ NSy where S1 = {X : || Xj|lo = k,Vj} U{0} and S; = {X : X;; = aj > 0,VX;; # 0}.
For all j, let X; be the j-th column of X, and I; contain the indices of k largest elements of X; and
o) = %Zz‘elj Xij. Then
max(0,af), i€I;

0, otherwise.

[Ps(X )]zg = {

Proof. Again by separability, we replace matrix X by vector x without loss of generality. For any vector
x € R™, we will explicitly solve the minimization problem Ps(x) = arg min,cs ||y — z||2.

We note that for any y € S, either y has k positive nonzeros so that y; = « > 0 for some index set

I of cardinality k (i.e., |I| = k) or y = 0 corresponding to I = (), while elements of y outside of I are

understood to be all zeros. For an arbitrary I with |I| = k and a corresponding y € S, consider the problem

of minimizing
ly = =) (a—a;)° + a3
JeI J¢l
m
= ka? — 204ij +Z£L']2
j€I j=1
=k [(a — mean(z7))? — (mean(:m))ﬂ + ||z
If for all I with |I| = k we have mean(x;) < 0, then the first term above is nonnegative so that ||y —

z||? > ||z||%, implying that ¥ = O is the unique minimizer (thus the projection of 2 on S). Otherwise,
ly —z|* > ||z||> — k(mean(z;))? and the minimum is attained when (i) & = mean(x7), and (i) mean(x;)
is maximized over all I with |I| = k; i.e., when [ contains k largest elements of z (the minimizer may not
be unique though). To sum up, we conclude that the optimal value of « is o = max(0, mean(z+)) where

I* contains k largest elements of x. This completes the proof. 0
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We note that in general projections onto intersections can be difficult even when it is easy to project onto
each individual set. In those cases, one may consider to compute an approximate projection using a round

or more of successive projections onto the individual sets.

4 Computational Results

This section contains four sets of numerical experiments. In Section[d.1] we evaluate the performance of our
SeMF algorithm, implemented in Matlab, with and without the adaptive penalty update scheme to illustrate
the advantage of the scheme (i.e., Algorithm 2). In Section we apply the SeMF algorithm to dictionary
learning for sparse representation and compare it with the well-established algorithm K-SVD [15]]. In Sec-
tion 4.3] we apply the SeMF algorithm to sparse nonnegative matrix factorization using the dataset ORL
[31]] and compare it with one of the latest algorithms designed for this problem. Finally, in Section [4.4]
we illustrate the versatility of our SeMF algorithm by adding various constraints to the factorization of the
swimmer dataset [32] to achieve improved quality.

All numerical experiments were run under Matlab version 8.0 (R2012b) on a Thinkpad laptop computer
with an Intel Core i5 processor at 2.5GHz with 8GB RAM.

The basic default setting of our SeMF algorithm is as follows. Throughout our experiments, we always
use the exact formula and in place of and (7b) to update X and Y in Algorithm 1. We set the
maximum number of iterations to maxiter = 1000 and the tolerance value to tol =1e-06, unless otherwise
specified. In any comparison run, we always use the same random initial guess to start all tested algorithms.

In Algorithm 2 (adaptive penalty parameter update scheme), we always use the parameter values
w=2, v=>5 and e=5x10"%

Unless otherwise specified, in Algorithm 2 we initialize penalty parameters to o = 8 = || M| z/100.

4.1 Validating Adaptive Penalty Update Scheme

To illustrate the effectiveness of our adaptive penalty parameter update scheme given in Algorithm 2, we
conduct a set of tests using synthetic data to compare the behavior of our SeMF algorithm with and without
the adaptive scheme.

For each test instance, we randomly generate a matrix X € R%0%60 yging the Matlab commend randn
while each column of X is normalized to unit £5-norm. We then construct a sparse matrix Y € R60x1500 gq
that each column of Y has 3 non-zeros in random values (using randn) and at random locations. Then we
synthesize the 40 x 1500 “exact” data matrix as the product M = XY'. In this case, the structure sets are
X = {X [ X2 = 1,Yj} and ¥ = {¥ : [¥;]0 < 3,7}

We test on 6 pairs of initial penalty parameters

(a, B) = 10" x [M||p x (1, 0.1), k=0,1,--- 5.
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Based on empirical evidence, we set « = 10 x 3 since such a choice tends to give better convergence results
for fixed penalty values in a proper range.

The convergence curves on |[M — UV||r and |[M — XY||F are shown in Figure |1} It should be
evident from Figure [T] that the adaptive updating strategy indeed dramatically improves the robustness of
Algorithm 1 with respect to choices of penalty parameters. With fixed parameter values, the algorithm was
successful only for one pair of values out of the total of six (see the lower left plot), but with the adaptive
scheme it succeeded in all six cases which span a wide range in magnitude. We believe that this robustness
represents a major advantage for our adaptive strategy.

We should add that with random starting, the plots in Figure 1 only represent a typical output but not
a deterministic one for solving the highly nonconvex optimization problem (I)). Roughly speaking, out of
many random runs using these 6 pairs of initial parameter values, about 80% of times our algorithm with the
adaptive scheme obtains an “exact factorization”, which is defined as the root-mean-squared error (RMSE)
is below the tolerance of 10710; that is, | M — XY || p//mn < 10710 for M € R™*™,
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Figure 1: convergence results of Algorithm 1 with fixed and adaptive updating penalty parameters in 6

different magnitude values, respectively.

15



4.2 Learning Dictionary for Sparse Representation

In recent years, there is a growing interest in the study of dictionary learning for sparse representations of
signals. Roughly speaking, we say that a signal y € R™ admits a sparse representation under a dictionary
D € R™*™ if one can find a linear combination of “a few” columns (atoms) from D that is “close” to the
signal y. Sparse representations serve useful purposes in many signal processing tasks, and a key to success
is to have a sufficiently good dictionary. In many situations, a good dictionary, such as a wavelet basis,
is known a priori. Most earlier works in this field have been done based on this premise, and algorithms
have been developed to reconstruct signals from a given dictionary and associated measurements. Such
algorithms include, but not limited to, Matching Pursuit (MP)[33]l, Orthogonal Matching Pursuit (OMP)[34,
35,136l 371, Basis Pursuit (BP)[38]] and the Focal Under-determined System Solver (FOCUSS) which use
different sparsity measure £,-norm (0 < p < 1) [39, 140} 41, 42]]. More recently, there is a growing body
of works without assuming that a dictionary is known. Instead, a dictionary is constructed for training
data using learned techniques such as K-means [43]], Maximum Likelihood Methods (ML) [44l 45| 146l 47]],
Method of Optimal Directions (MOD) [48, 149, 50], Maximum A-posteriori Probability (MAP) [51} 52|
53|, K-SVD [[15]], or Online Dictionary Learning (ODL) [16], for example. Under favorable conditions,
learning the dictionary instead of using off-the-shelf bases has been shown to dramatically improve signal
reconstruction.

Dictionary learning for sparse representation can be formulated as a Structured-enforced Matrix Fac-
torization (SeMF) problem. Here we will change our notion to the one more popular in the literature of
dictionary learning. We denote a training dataset by Y (in place of M), a dictionary by D (in place of X)
and a sparse representation by X (in place of Y'). The corresponding SeMF model (1) takes the following
form,

%1’1)? Y — DX||% st. DeD, X € A, (25)

where,
D= {[d, - ,dy] € R™* P ||dille = 1,Vi=1,--- , p},

X ={[x1, 2] ERP" i |layllo < k,Vi=1,--- ,n}.

(26)

Both D and X are easily projectable sets so that we can apply our SeMF algorithm to (25) without difficulty.
We compare our SeMF algorithm with the well-established K-SVD algorithm [15] on synthetic signals
constructed as in the experiments in [15]. The operations of K-SVD consist of two alternating stages:
an SVD stage and a sparse-coding stage. The main computational cost is with the latter stage which is
performed by using an orthogonal marching pursuit (OMP) algorithm. In our comparison, we use the
Matlab code KSVDBox (VlSEthat calls the package OMPBox (v10) [37] for doing OMP operations.
Generation of the data: A random matrix D (referred to later on as the generating dictionary) of

size m X p is generated with iid uniformly distributed entries, each column of which is normalized to

!Available at http://www.cs.technion.ac.il/~ronrubin/software.htmll
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a unit {3-norm. Then n signal samples of dimension m are produced, each a linear combination of k
different generating dictionary atoms, with uniformly distributed iid coefficients in random and independent
locations. White Gaussian noise is added to the resulting data signal samples. We denote the generated
signal samples as Y.

Evaluation of computed dictionaries: The quality of a computed dictionary, D, is evaluated against
the generating dictionary D). This comparison is done by sweeping through columns of the generating
dictionary and finding the closest one (in £2-norm) in D, measuring the distance via the formula

dist(d;, D) = min (1 - |d]Td’,-\) . 27)
P

=1,

Then define the distance between the two dictionaries by the mean

dist(D, D) Zdzst (dj, D), (28)

As is defined in [15], we say that the atom d; is successfully recovered if the distance dist(d;, ﬁ) < 0.01.

Setting of the tests: In SeMF algorithm we use the default setting except using maxiter = 500. In
K-SVD algorithm, we set maxiter = 200 as was used in the paper [15] (most tests terminate within 100-
150 iterations). In this experiment, we perform three sets of tests where the dictionary size is always set
to (m,p) = (20,50). Unless specified otherwise, we set sparsity k& = 3, and add white Gaussian noise to
generated sample so that the signal-noise ratio SNR = 20.

In the first test, we vary the sample size n from 200 to 1000 with increment 50, compute the percent-
age of recovered atoms of the generating dictionary and the distance between the learned and generating
dictionaries defined in (28), and record computing time used by SeMF and K-SVD algorithm, respectively.
For each quantity, we report the average of 20 runs starting from the same random initial points for the two

methods. The results are the three plots in Figure 2]

Recovery Percentage dist(D, D) Time
100 0.2 8
~aZEEeeEias —=—SeMF
——KSVD
80 0.15 6 7
60
0.1 4
40
20 —=—SeMF 0.05 2 —=—SeMF
o ——KSVD 0 . —o—KSVD
0 500 1000 0 500 1000 0 500 1000
number of samples number of samples number of samples

Figure 2: Performance of SeMF and K-SVD on dictionary learning with different sample sizes

The essential observation from Figure [2]is that in this test set SeMF tends to perform better than K-SVD

in a consistent manner when the number of sample is relatively small. As the number of samples increases,

17



the performances of the two eventually become indistinguishable in terms of quality of recovery. In terms
of computing time, the tendency appears to be that SeMF would eventually become more expensive than K-
SVD as the sample size continues to increase. We do mention that the dominant computational task (sparse
coding) in K-SVD is coded in C language, while SeMF is coded entirely in Matlab. In addition, we note
that in this test there is really no need to use sample sizes much larger than n = 500 at which level SeMF is
still faster than K-SVD is.

In the second test, we vary the sparsity level from k£ = 1 to 5 and find the smallest number of samples
needed to recover at least 90% of the generating dictionary. At each sparsity level k, we start from sample
size n = 200 and run SeMF and K-SVD each 10 times with different random starting points, and then
record the average recovery rate in percentage. If the average is less than 90%, we increase the number of
samples by 50 and repeat the process, until both SeMF and K-SVD reach the average recovery rate of 90%.
The results from this test are given in Figure |3| which show that, to learn those tested dictionaries, SeMF

tends to require considerably less samples than K-SVD does, especially when the training data have high

sparsity.
number of samples o dist(D, D) Time
2000 10 15
] —&— SeMF
1500 —e—KSVD
10
1000 102 W
5
500
—=—SeMmF —=— SeMF
—e—KSVD —o— KSVD
-3
0 10 0
0 2 4 6 0 2 4 6 0 2 4 6
sparsity k sparsity k sparsity k

Figure 3: SeMF and K-SVD: Sample size needed for 90% recovery rate vs sparsity

In the third test, we generate sample datasets with SNR level varying in the range (10, 20, 30, c0) in
order test the performance of SeMF and K-SVD with respect to noise in data. For each instance we do 100
random trials and record the number of recovered atoms in each trial. These 100 numbers are then sorted
into 5 groups of 20 and the average values are taken for all five group. Following what is done in [13]],
we plot these five average numbers of successfully recovered atoms for both SeMF and K-SVD in Figure 4]
Recall that there are 50 atoms in total for all the generating dictionaries. Hence, the number 40, for example,
implies a 80% recovery rate.

The plot in Figure 4| suggests that in this test SeMF demonstrate a slightly higher degree of robustness
than K-SVD do when there is noise in data, especially when the noise level is relatively high (SNR = 10).
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Figure 4: Number of recovered atoms by SeMF and K-SVD with noisy data

4.3 Factorizing Face Images from ORL database

Lee and Seung [7]] find that nonnegative matrix factorization (NMF) produces part-based representations
when applied to the CBCL face image databas However, it is noted by Hoyer [10] that when applied to
the face images in the ORL database [31]], which are not well aligned, the resulting representations appear
to be rather global and holistic. Numerous sparsity constraints have been proposed to be added to NMF in
order to promote part-based representations.

The ORL database contains 400 face images of the resolution 92 x 112 = 10304 pixels. These face
images form the training data matrix M of size 10304 by 400. In the computational experiments of [10,13]],
the number of basis vectors in X is set to 25. Hence the sizes of X and Y are 10304 x 25 and 25 x 400,
respectively. We use the same setting to test our SeMF algorithm on the ORL database via solving the
following problem,

r)%i? IM - XY||% st. X€X Y €, (29)

where,
X ={X:X;;>0,[|Xjllo <k, Vij}

Y ={Y:Y; >0,¥ij}.

(30)

As in [[10], we run tests for three values of sparsity k (the number of nonzero pixels), corresponding to 33%,
25% and 10% of the total number of pixels per image (10304). In SeMF, we set the maximum number of
iterations to maxiter = 500 and choose initial penalty parameter value o = 3 = 0.3||M || .

We do a comparison between our SeMF algorithm and a recent algorithm by Peharz and Pernkopf [13]],

implemented in a Matlab package called NMF/ (in which only the function NMF/°-W is relevant to our

Zhttp://cbcl.mit.edu/projects/cbcl/software-datasets/FaceDatalReadme.html
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testsﬂ which has been reported to produce good results and to be faster than the earlier algorithm of Hoyer
[10]. In our experiment, we use the default setting of the code NMF/° without any change.

Figure [5] shows the computed basis vectors in a particular run, reshaped into 92 x 112 images, returned
by SeMF and by NMF/? in a typical run, with the three columns corresponding to the three sparsity levels at
35%, 25% and 10%. For a better visual effect, we have reversed the pixel values so that dark pixels indicate

high values and white pixels indicate low ones.
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Figure 5: Basis images computed by SeMF (row 1) and NMF/° (row 2) at the 3 sparsity levels.

We see from Figure [3] that the images from the two methods are visually similar. As the basis images
becomes sparser, they naturally also become more part-based. To quantify the solution quality and running
time, we make 10 random runs and compute the average running time and average SNR, as is done in [13]],
where SNR is defined in db as

M| r
SNR =20 IOglo m

In Tablem we tabulate the average SNR (in db) and average running time (in second). While the SNR values
are close (with a slight advantage towards SeMF), we observe that SeMF takes considerably less time than

NMF/?° does on these test problems.

3Available at: http://www.spsc.tugraz.at/tools/nmf-10-sparseness-constraints,
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Table 1: Comparison of reconstruction quality in terms of SNR, and running time for SeMF and NMF/°

[13]]lwhen the same Eo—sparseness is enforced.

Method | /9 SNR Time | ¢° SNR Time | ¢° SNR Time
NME® | 33% 14.945 399.88 | 25% 14.832 29435 | 10% 14.237 128.94
SeMF | 33% 14973 7659 | 25% 14.858 7442 | 10% 14291  75.65

It is interesting to note that the gap in running time widens as the number of nonzero entries in basis
images increases. The running time of NMF/ is roughly linearly proportional to the number k since a
major operation in the algorithm is component-wise multiplication of sparse matrices. On the other hand,
the running time of SeMF is independent of k. However, we note that the update formulas and both
require solving linear systems of size p X p where p is the number of basis vectors in X. In the current tests
p = 25 which is negligible relative to m = 10304. When p becomes relatively large, the speed advantage

of SeMF should diminish to some extent.

4.4 Factorizing the Swimmer Dataset

The Swimmer Dataset [32]] consists of 256 images of resolution 32 x 32, representing a swimmer built by an
invariant torso and 4 limbs. Each of the 4 limbs can be in one of 4 positions and the dataset is formed of all
combinations. Some images are shown in Figure [0 depicting eight stick figures with four limbs. Hence, the

ground truth decomposition is known for this dataset, i.e. each image is comprised by 5 of the 17 distinct

non-overlapping basis images (or parts), as are shown in Figure

SRR

Figure 6: Sample images from the Swimmer database; illustrating different articulations of limbs.

A central question here is that given enough samples like those shown in Figure [6] can and how one
recover the “ground truth” basis images given in Figure[7|in an exact order? By “an exact order”, we mean
that each row should include all four possible positions of a limb. To see this clearly, we look at Figure
where the 17 basis images are grouped into five natural groups so that each swimmer sample consists of five
images each coming from one of the five groups. This is precisely a combinatorial property discussed on
Section 3.2.

So far, numerous papers have tried their algorithms on the Swimmer Dataset with a varying degree of
success (or failure). Like the plain NMF model [7]], the code called Nonnegative Sparse Coding (NNSC) [8]]
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Figure 7: The seventeen basis images of the Swimmer Dataset

(a) (b) (© (d) (e)

Figure 8: Five natural groups of the 17 basis images

typically recovers most of 16 limbs together with a shadow torso attached, and has trouble to recover a clean
torso without some limb attached. An algorithm called Localized NMF (LNMF) [9,154] imposes penalization
on the encoding matrix vectors (columns of Y in our notation) and locality constraints on the basis matrix (X
in our notation) aiming to extract binary-like, quasi-orthogonal basis images. Algorithm NMF sc (NMF with
sparseness constraint) [[10] adds sparsity constraints to classical NMF using a particular sparseness measure.
Algorithm nsNMF (Non-smooth NMF) [11] also adds a non-smooth cost function to promote sparseness
which then is smoothed with a parameter controlling the degree of smoothness. These algorithms, LNMF',
NMF' sc and nsNMF, can extract a cleaner torso, but not completely eliminate torso ghosts in limbs. In [53]],
a rather general framework called Constrained Sparse Matrix Factorization (CSMF) is proposed including
a special case of CSMF, called CSMFnc that handles nonnegativity. The model Structured Sparse Principal
Component Analysis (SSPCA) [12]] utilizes a regularization function introduced in [17], which influences
not only the number of nonzeros (in X') but also the whereabouts of them. In a recent work [14], the authors
propose models called spatial NMF and spatial nonnegative component analysis (Spatial NCA) using so-
called pixel dispersion penalty to favor spatially localized basis images. Utilizing enough properties of the

ground truth images, these latest algorithms, CSMFnc, SSPCA, Spatial NMF and Spatial NCA,
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can successfully recover the ground truth basis images (more details of some of these results can be found
in [[14, 55]]). However, it is worth emphasizing that these recovered ground truth basis images are usually
not grouped in “an exact order” as is defined above.

For the Swimmer Dataset, the SeMF problem takes the form:
min || M — XY|%st. X € X CRIZIT 'y ¢ y ¢ RIT*256, 31

where definitions of structure sets X and ) will depend on what prior information we impose. We mention
that, as in all of the previous tests on Swimmer Dataset, all 256 distinct samples are included in the sample
matrix M which is 1024 x 256.

We test our SeMF algorithm on the Swimmer Dataset with several choices of X and ). Throughout
the tests, we set maxiter = 2000, tol = 1075, and initialize penalty parameters to (o, 3) = (1, 1) x

|| M || /100, while all other parameters are in default setting.

44.1 Sparse NMF

We first try the standard sparse NMF: nonnegativity on X and Y plus sparsity on Y, all column-wise. It is

known that the number of nonzeros of each Y); should be 5 (choosing 5 parts from 17 basis). In this case,

X = {X : Xij > O,V’L',j},
Y=A{Y:Y;; 20,|[¥jlo < 5,¥j}

(32)

Clearly, both X and ) are easily projectable sets (see Section 3). A typical output from our SeMF algorithm
is shown in Figure We observe that the outputs are similar to results of any other algorithms when only
imposing nonnegativity on X and sparsity or nonnegativity on Y'; that is, the recovered torso is not clean

and the limbs have ghost torsos attached.

4.4.2 Sparse NMF with equal nonzeros

In the next experiment, we incorporate the information that since the samples are simple sums of the basis

images the nonzeros in Y should be equal. Thus we try the following structure sets:

X ={X:X;;>0,Yij},
Y={Y:|Yllo=5VitNn{Y :Y;=a;>0,VY; #0}U{0})

(33)

which permit easy projections, as is shown in Section 3. With these structure constraints we solve problem
(31) by our SeMF algorithm, and plot a typical result in Figure O(b)l We observe that now a clean torso
is recovered, but some limbs still have ghost torso, similar to those results obtained by algorithms like

LNMF [9}54], NMFsc [[10] and nsNMF [11]].
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(a) Sparse NMF (b) Sparse NMF with equal nonzeros

Figure 9: SeMF Results for structure sets (32) and (33)

4.4.3 Sparse NMF with orthogonality

Since the 17 basis images in Swimmer Dataset are non-overlapping, they are mutually orthogonal. We
utilize just one piece of such orthogonality information to help improve recoverability. Assuming that the
torso is the 17th part, we require that all limbs be orthogonal to it. In addition, we impose a known upper
bound on the number of nonzeros in the torso image which happens to be 17 as well. Together, the resulting
structure sets are:

X ={X:X;;>0,[|Xi7]jo <17, X1.... 16 L Xu7},

Y= {Y:¥y>0,]¥lo <5, Vi}.

(34)

In this case, a closed form of Py, the projection onto &, is still unknown to us. To approximate Py,
we do a round of successive projections as follows: first nonnegativity projections for all, then sparsity
projection for X7, then orthogonality projections for X ... 16, and finally nonnegativity projections for
X1,... 16 to eliminate any possible violation in nonnegativity. It turns out, as numerical results show, that this
approximation to Py works adequately well for Swimmer Dataset. A typical output of basis images from
our SeMF algorithm is plotted in Figure showing that all 17 basis images are successfully recovered.
The quality of the solution is similar to that obtained by CSMFnc [S5], SSPCA [12], Spatial NMF and
Spatial NCA [14]. (For some reason still unknown to us, the central torso is typically extracted as the
17th part as is planned, even though it is not the only part satisfying the specified structures.)

It is noticeable that the basis images in Figure are not in an exact order, hence there is no group

information recovered.
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4.4.4 Sparse NMF with combinatorial patterns

Finally we consider the combinatorial structure of Swimmer Dataset discussed earlier in this section. We
denote X7 as the central torso like in , and each 4 columns of {X, -, X4} as one limb group.
Correspondingly, we divide the rows of Y into five groups as well. It is known the 5 non-zeros in every
column Y are distributed over the 5 groups with one nonzero in each group. As such we have the structure
sets:

X ={X:X;;>0,[Xi7]o <17, X1.... 16 L Xu7},

y: {YY;J ZO?H(Y})GtHO = 17t: 17 757Vi7j}

(35)

where Gy = 4(t — 1) + {1,2,3,4},t = 1,2,3,4, and G5 = {17}. We compute the projection Py by
the same approximation as for (34). The projection Py can be exactly computed as is described in Section
3.3. A set of typical basis images computed by solving with is presented in Figure [T0(b)l It is
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(a) Sparse NMF with structure (b) Sparse NMF with structure

Figure 10: SeMF Results for structure sets and

clear from Figure the recovered basis images are in an exact order, meaning that for each limb the
four possible positions appear in the same row. For example, the third row in Figure consists of the 4
different positions for the right-top limb corresponding to Figure [§(b)] To the best of our knowledge, so far
there is no other algorithm that is designed to exploit combinatorial sparsity like our SeMF algorithm does.

As we have purposely alluded to, the results presented are typical but not deterministic. Since we
always start from random initial points and the problems are nonconvex. A global minimum is by no means
guaranteed in theory, even with out dynamic penalty scheme which often helps escape from local minima
in practice. In our repeated testing, we do sometimes obtain less favorable results than those presented

in Figure 0] and Figure By our estimate, the overall success rate of our SeMF algorithm in all the
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Swimmer dataset tests is about 90% or higher. In general, the success rate goes up as we add more structural
information. For example, we have tried to add the equal nonzero constraint: Y;; = a; > 0,VY;; # 0 to
the structure set ) in (35) and do a succesive projection approximation. Out of a large number of trials, we

have not encountered any failure in getting the results in Figure [T0(b)|

S Concluding Remarks

In summary, we have accomplished the following tasks in this paper.

1. We have devised a versatile algorithmic framework, via the approach of variable-splitting and ADMM,
for solving a large class of structure-enforced matrix factorization (SeMF) problems. To apply the al-
gorithm, a user is only required to supply one or two projection functions, either exact or approximate.
To tackle the critical issue of penalty parameter selection in ADMM, we have developed an adaptive
penalty parameter update scheme that frees a user, at least partially, from the difficult task of selecting

and tuning penalty parameters.

2. We have extensively tested our algorithm on several classes of problems. Empirical evidence shows,
rather convincingly, that the algorithm is quite effective in solving all the tested problems. Its per-
formance has been found to be competitive with, often favorable to, some existing special-purpose

algorithms representing the state of the art.

Structured matrix factorization problems are generally highly nonconvex, and problems in real-world
applications can be much more complex and more difficult to solve than the test problems used in this paper.
Even though we have not intention to claim that the algorithm presented in this paper can be taken as a
out-off-shelf solver for any particular application without further careful work, we do believe that it adds to

the toolbox of structured matrix factorization a versatile and useful technique.
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