
SUPPLEMENTARY MATERIALS:
SHAPE OPTIMIZATION OF SHELL STRUCTURE ACOUSTICS ∗

HARBIR ANTIL† , SEAN HARDESTY‡ , AND MATTHIAS HEINKENSCHLOSS§

SM1. Introduction. This supplement contains details that were omitted from
the main paper [SM2] because of page limitations.

SM2. The Model for the Shell Structure Acoustic Interaction. To avoid
switching between the main paper and this supplement, we have included the entire
expanded version of Section 2, not only the details and proofs missing from Section 2
of the main paper.

SM2.1. Naghdi Shells. When an elastic body is much smaller in one dimension
than in the other two, it can be modeled using shell equations. The Naghdi shell model
is derived from standard linear elasticity, reducing the original problem (1a-c) from
three dimensions to two. The classical derivation makes use of a kinematic assumption
and a mechanical assumption, which are not strictly necessary: Delfour has developed
a version of the Naghdi model based on “intrinsic” differential calculus, which avoids
recourse to these assumptions [SM13, SM14]. We follow the more classical approach
proposed by Blouza and Le Dret [SM5, SM7] because it is well-known and closely
tied to the implementation of the long-used MITC finite element methods; see [SM9,
§6.3], [SM8, SM9].

In the derivation of Naghdi’s model, we assume u to be real-valued. It will
become complex-valued in §SM2.3, when we couple it with the Helmholtz equation.
We consider “thin” domains, which are described by a so-called middle surface chart
φ : Ω0 ⊂ R2 → R3 defined on a reference domain Ω0 ⊂ R2 and a thickness function
t : Ω0 → R+. We make the following assumptions.

(A1) The reference domain Ω0 ⊂ R2 is bounded and satisfies the strong local
Lipschitz condition.

(A2) The chart function φ belongs to the set

C =
{
φ ∈W 2

∞(Ω0)3 : φ is one-to-one and(SM1)

∂αφ(x1, x2), α = 1, 2, are linearly independent for all (x1, x2) ∈ Ω0

}
.

We define the covariant basis vectors

(SM2a) aα(x1, x2) = ∂αφ(x1, x2), α = 1, 2,

which span the plane tangent to the middle surface, and we define the unit normal to
the middle surface

(SM2b) a3(x1, x2) =
a1(x1, x2)× a2(x1, x2)

|a1(x1, x2)× a2(x1, x2)|
.
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Fig. SM1. Naghdi shell geometry: The physical domain Ω̃ = Φ(Ω) is con-
structed via the thickness function t and the chart function φ through the map-
ping Φ(x1, x2, x3) = φ(x1, x2) + x3a3(x1, x2). of the reference domain Ω ={

(x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω0 and |x3| < t(x1, x2)/2
}

.

The dual contravariant basis vectors ai are defined via

ai(x1, x2) · aj(x1, x2) = δij , i, j = 1, 2, 3

where δij is the Kronecker delta. The covariant and contravariant components of the
metric tensor are respectively

aij = ai · aj , (aij) = (aij)
−1.

Furthermore we define the change of metric factor

(SM2c)
√
a(x1, x2) =

√
a11(x1, x2)a22(x1, x2)− a12(x1, x2)2.

See [SM10, SM9, SM16] for more details on shell geometries.
Our domain is the image of the reference domain

Ω =
{

(x1, x2, x3) ∈ R3 : (x1, x2) ∈ Ω0 and |x3| < t(x1, x2)/2
}
,(SM3)

under the mapping

(SM4) Φ(x1, x2, x3) = φ(x1, x2) + x3a3(x1, x2),

(see Figure SM1), and is given by

Ω̃ = Φ(Ω).

For the remainder of this subsection we denote points in Ω̃ by x̃ and points in Ω0

by x. Greek subscripts and superscripts take values in {1, 2}, while Latin subscripts
and superscripts take values in {1, 2, 3}. Throughout the paper we use the Einstein
summation convention.

Proposition SM2.1. If (A1) and (A2) hold, then the map Φ : Ω0 × R → R3

defined in (SM4) is a local W 1
∞-diffeomorphism.

Proof. Notice that by its definition, a3 ∈W 1
∞(Ω). Therefore, the requirements of

[SM1, Theorem 3.7] are fulfilled, and thus Φ is a local W 1
∞-diffeomorphism.

Alternatively, from the definition of Φ we obtain

∇Φ =
(
a1 a2 a3

)
+ x3

(
∂1a3 ∂2a3 0

)
.
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For every ε > 0, by (A2), we have that ∇Φ ∈ L∞(Ω0 × (−ε, ε)). In addition,
det

(
a1 a2 a3

)
> 0, which implies that det ∇Φ > 0 on Ω0 × (−ε, ε) when ε

is small enough, i.e., ∇Φ is invertible.
Therefore the inverse function theorem can be applied, which shows that locally

Φ is a W 1
∞-diffeomorphism.

Remark SM2.2. Notice that it is possible to reduce the regularity requirement on
a1, a2 to W 1

∞(Ω), instead of W 2
∞(Ω) and still arrive at Proposition SM2.1, see [SM1].

Ciarlet in [SM10] uses a similar diffeomorphism property of Φ as in Proposi-
tion SM2.1 to show that the shell model is a limiting case of 3d elasticity. In our
work, we will use Proposition SM2.1 in §SM2.2 in order to write the boundary inte-
gral equations for the Helmholtz screen problem.

We represent displacements on the reference domain Ω. For x̃ = Φ(x) we define

(SM5) u(x) = ũ(Φ(x)) = ũ(x̃).

The Naghdi model of Blouza and Le Dret [SM5, SM7] is derived from 3d elasticity
on Ω by use of the Reissner-Mindlin kinematic assumption, i.e., by assuming the
following form for the 3d elastic displacement:

u(x1, x2, x3) = z(x1, x2) + x3θ(x1, x2).(SM6)

The displacement u : Ω → R3 is composed of the displacement z : Ω0 → R3 of the
middle surface plus a first-order rotation θ : Ω0 → R3, with θ · a3 = 0. This means
that material lines normal to the undeformed middle surface can translate and make
a first-order rotation.

To derive the Naghdi shell equations, the functions z and θ can be represented in
the locally-varying basis {a1, a2, a3} or the through their Cartesian components. To
distinguish between between vectors and their components we temporarily use vector
symbols. That is we write

~u(x1, x2, x3) = ~z(x1, x2) + x3
~θ(x1, x2)

instead of (SM6). To derive the Naghdi shell equations, the locally-varying basis
{~a1,~a2,~a3} is used to represent the shell geometry and the constitutive tensors. In
the classical formulation (see, e.g., [SM9, §4.2.2]), it is also used to represent the

vectors ~z and ~θ: they are identified with their covariant components z = (z1, z2, z3)
and θ = (θ1, θ2) via

~z(x1, x2) = zi(x1, x2)~ai(x1, x2), ~θ(x1, x2) = θα(x1, x2)~aα(x1, x2).

Blouza and Le Dret [SM5, SM7] instead represent the vectors appearing in (SM6)
through their Cartesian components; in this vein, see also the more specialized pa-
pers by Le Dret [SM15], Sprekels and Tiba [SM25], and Bletzinger et al. [SM4]. The
presentation in [SM5, SM7] is simpler than the classical one and does not require dif-
ferential geometry concepts such as covariant derivatives and the second fundamental
form.

We adopt a hybrid approach in that we identify ~θ with its covariant components
and ~z with its Cartesian components, i.e., we drop the vector symbols and simply
write θ = (θ1, θ2) to indicate the covariant components of ~θ, and z = (z1, z2, z3) to
indicate the Cartesian components of ~z. Thus, the kinematic assumption appears

u(x1, x2, x3) = z(x1, x2) + x3θα(x1, x2)aα(x1, x2).(SM7)



SM4 H. ANTIL, S. HARDESTY, AND M. HEINKENSCHLOSS

This choice will allow us to formulate the problem in a function space that does not
depend on φ as does that of Blouza and Le Dret through the tangency condition
~θ · ~a3 = 0, and in fact is more closely tied to practical finite element implementation
than either the classical approach or that of Blouza and Le Dret [SM5, SM7]; see
[SM9, §6.3].

If we use the geometric assumptions on Ω̃ = Φ(Ω) stated above, (SM5), as well as
the kinematic assumption (SM7) for u and a corresponding assumption v(x1, x2, x3) =
y(x1, x2) + x3ηα(x1, x2)aα(x1, x2), for the test function, then the 3d elastic bilinear
form ∫

Ω̃

(H : e(ũ)(x̃)) : e(ṽ)(x̃) dx̃

leads to

K(θ, z; η, y) :=

∫
Ω0

(
Cαβλµ

[
tγαβ(z)γλµ(y) +

t3

12
χαβ(θ, z)χλµ(η, y)

]
+ tDλµζλ(θ, z)ζµ(η, y)

)√
a(x) dx(SM8)

with γαβ , χαβ , ζα, C
αβλµ, Dλµ defined next.

The tensors γ, χ, ζ, which correspond to membrane stretching, bending, and trans-
verse shear, respectively, are given by

γαβ(z)
def
= 1

2

(
aα(x) · ∂βz(x) + aβ(x) · ∂αz(x)

)
,

χαβ(θ, z)
def
= 1

2

(
aα(x) · ∂β(θλ(x)aλ(x)) + aβ(x) · ∂α(θλ(x)aλ(x))

+ ∂αa3(x) · ∂βz(x) + ∂βa3(x) · ∂αz(x)
)
,

ζα(θ, z)
def
= 1

2

(
θα(x) + a3(x) · ∂αz(x)

)
.

The form of these tensors is as in Blouza and Le Dret [SM5, SM7], in contrast to
the classical formulation, which makes use of covariant derivatives and the second
fundamental form. Using covariant derivatives here would simplify the appearance of
the terms in χ involving θ, but would obscure the dependence on the chart function
φ. We note that these tensors still make sense for charts that are W 2

∞: the classical
formulation required a C3 chart in order to formulate the standard problem of a shell
clamped on an edge because the Koiter rigid-body lemma was not known until [SM6,
Thm. 6] to hold for W 2

∞ charts. In our problem, derived from (1), no clamping is
applied, and the rigid-body lemma is not required.

The Naghdi constitutive tensors (Cαβλµ) and (Dλµ) are obtained from the con-
stitutive tensor H in (1b). If the material is homogeneous and isotropic, i.e., if

(SM10) Hijkl =
E

2(1 + ν)

(
δikδjl + δilδjk +

2ν

1− 2ν
δijδkl

)
,

i, j, k, l = 1, 2, 3, where E is the Young modulus, ν is the Poisson ratio, and δij is the
Kronecker delta, then the components of the Naghdi constitutive tensor are given by

(SM11) Cαβλµ =
E

2(1 + ν)

(
aαλaβµ + aαµaβλ +

2ν

1− ν
aαβaλµ

)
and Dλµ = 2Eaλµ/(1 + ν).1 The appearance of 1 − ν in the second denominator of

1Blouza and Le Dret [SM7] use Lamé moduli instead of Young’s modulus and Poisson ratio. We
note that the formula (3.2) in [SM7] for the Naghdi constitutive tensor contains several typographical
errors; the indices in [SM7, Eqn. (3.2)] should be the ones given in (SM11). See also [SM10, p. 147]
and [SM9, Eqns. (4.34), (4.35)].
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(SM11) instead of 1 − 2ν as in (SM10) is due to the mechanical assumption of zero
normal stress; see [SM9, §4.2.1].

Similarly, applying the geometry description and the Naghdi assumption (SM7)
to the inertial term ∫

Ω̃

ρũ(x̃) · ṽ(x̃) dx̃,

which corresponds to the weak form of the left hand side in (1a), leads to the Naghdi
inertial form

M(θ, z; η, y) :=

∫
Ω0

ρ
(
tz(x) · y(x) +

t3

12
θα(x)aαβηβ(x)

)√
a(x) dx.(SM12)

The (weak form of the) equations (1a-c) are replaced by the following Naghdi
shell equations. Let

(SM13) S = H1(Ω0)2 ×H1(Ω0)3.

We seek (θ, z) ∈ S such that

(SM14) K(θ, z; η, y)− ω2M(θ, z; η, y) =

∫
Ω0

h(x) · y(x)
√
a(x) dx

for all (η, y) ∈ S. Here h is determined from the right hand side (1c).
We make the following assumptions on the Naghdi constitutive tensors.

(A3) There exists constants 0 < c1 < c2 and 0 < c3 < c4 such that for almost all
x ∈ Ω0 and all symmetric tensors γ, χ and all vectors ζ, ξ,

Cαβλµ(x)γαβγλµ ≥ c1
∑
α,β

γ2
αβ , Cαβλµ(x)γαβχλµ ≤ c2γαβχαβ ,

Dλµ(x)ζλζµ ≥ c3
∑
λ

ζ2
λ, Dλµ(x)ζλξµ ≤ c4ζλξλ.

Assumption (A3) holds if (A2) is valid and the Naghdi constitutive tensors (Cαβλµ)
and (Dλµ) are obtained from the tensor (SM10) for homogeneous isotropic materials
with E > 0 and ν ∈ (0, 1/2).

Blouza and LeDret [SM7, Lemma 3.6] use assumptions (A2) and (A3) to prove
that the bilinear form K in (SM8) is bounded and coercive on S0 × S0 provided
that the shell is clamped and S0 ⊂ S is the subspace that incorporates the clamping
condition. To analyze the coupled problem we will need a slightly different result.

We first make the following standard assumption for the thickness function t.

(A4) The thickness function t belongs to the set

(SM15) T =
{
t ∈ L∞(Ω0) : t(x) ≥ tmin > 0 for almost all x ∈ Ω0

}
.

Lemma SM2.3. If the assumptions (A1)–(A4) hold, then there exists a constant
k0 > 0 such that the bilinear form

((θ, z), (η, y)) 7→ K(θ, z; η, y) + k0

∫
Ω0

θ(x) · η(x) + z(x) · y(x) dx

on S × S is bounded and coercive.
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Proof. Boundedness follows in a straightforward manner from (A1)–(A4).
For coercivity, we need (A3) plus bounds on the L2-norms of the various tensors.

The proof uses ideas from [SM9, p. 104].
Given a vector w = (w1, w2), define

eαβ(w) = 1
2 (∂αwβ + ∂βwα).

Then, Korn’s inequality [SM8, §VI.3.1] states that there exists c > 0 such that∑
α,β

‖eαβ(w)‖2L2(Ω0) + ‖w‖2L2(Ω0)2 ≥ c‖w‖
2
H1(Ω0)2 .

We consider the tensors γ, χ, δ separately.
• γ: define wα = z · aα. Then,

eαβ(w) = 1
2 (∂α(z · aβ) + ∂β(z · aα))

= 1
2 (∂αz · aβ + ∂βz · aα)︸ ︷︷ ︸

=γαβ(z)

+ 1
2z · (∂αaβ + ∂βaα).

Using Korn’s inequality, the triangle inequality, and φ ∈ W 2
∞(Ω0)3 (which

implies that the quantity ‖∂αaβ+∂βaα‖L∞(Ω0) can be bounded by a constant)
yields the bound∑

α,β

‖γαβ(z)‖2L2(Ω0) + ‖z‖2L2(Ω0)3 ≥ cγ‖(z · a1, z · a2)‖2H1(Ω0)2 .(SM16)

Note that (SM16) controls only the in-plane part of ‖z‖H1(Ω0)3 .

• χ: define wα = aα · (θλaλ). Then,

eαβ(w) = 1
2 (∂αwβ + ∂βwα)

= 1
2 (aβ · ∂α(θλa

λ) + aα · ∂β(θλa
λ))︸ ︷︷ ︸

=χαβ(θ,z)− 1
2 (∂αz·∂βa3+∂βz·∂αa3)

+ 1
2 (θλa

λ) · (∂αaβ + ∂βaα).

Arguing as with γ, we obtain the bound∑
α,β

‖χαβ(θ, z)‖2L2(Ω0) + ‖z‖2H1(Ω0)3 + ‖θ‖2L2(Ω0)2 ≥ cχ‖θ‖
2
H1(Ω0)2 .(SM17)

• ζ: it remains to control ‖z · a3‖H1(Ω0). Observe that

∂α(z · a3) = ∂αz · a3︸ ︷︷ ︸
=2ζα(θ,z)−θα

+z · ∂αa3.

Thus, we obtain the bound∑
α

‖ζα(θ, z)‖2L2(Ω0) + ‖θ‖2L2(Ω0)2 + ‖z‖2L2(Ω0)3 ≥ cζ‖z · a3‖2H1(Ω0).(SM18)

Combining (SM16), (SM17), and (SM18), we arrive at∑
α,β

(
‖γαβ(z)‖2L2(Ω0) + ‖χαβ(θ, z)‖2L2(Ω0)

)
+

∑
α

‖ζα(θ, z)‖L2(Ω0)2 + ‖z‖2L2(Ω0)3 + ‖θ‖2L2(Ω0)2

≥ C
(
‖z‖2H1(Ω0)3 + ‖θ‖2H1(Ω0)2

)
.
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Remark SM2.4. In the next section, and for the rest of the paper, the field vari-
ables (θ, z) are assumed to be complex-valued, with the real part being the physical
value. For a complex-valued forcing function h, the analogue to (SM14) is

K(θ, z; η, y)− ω2M(θ, z; η, y) =

∫
Ω0

h(x) · y(x)dx.(SM19)

In particular h depends on ϕ and is used to couple (SM19) with the approximation of
the Helmholtz equation (1d-f).

Since K (SM8) and M (SM12) are real, symmetric bilinear forms, Lemma SM2.3
remains valid if complex-valued (θ, z) and (η, y) are used.

In the next subsection we describe the approximation of the Helmholtz equation
(1d-f), and then we state and analyze the coupled system, which contains (SM19).

SM2.2. Screen Boundary Integral Equations. We continue to use the ge-
ometry description of the shell introduced in the previous section. In this section we
discuss the approximation of the Helmholtz equation (1d-f) by a boundary integral
equation on the midsurface φ(Ω0) of the shell. This leads to the so-called “screen”
problem studied by Stephan [SM26]. In this section we outline the approximations
that lead to the screen problem, sketch the derivation of the corresponding boundary
integral equations and summarize results that will be needed to state and analyze the
coupled problem.

To arrive at the screen problem we consider the Helmholtz equation (1d-f) and
make the following approximations; see Martinez [SM22].

(S1) The surfaces
{
φ(x)± t(x)a3(x)/2 : x ∈ Ω0

}
of the shell (see Figure SM1) are

approximated by the middle surface φ(Ω0).
(S2) The normals on the shell surfaces

{
φ(x)± t(x)a3(x)/2 : x ∈ Ω0

}
are approx-

imated using the midsurface normal n(φ(x)) = a3(x).
We emphasize the physical nature of the approximations (S1,S2): if the thickness

of the shell is small compared to acoustic wavelengths, it is reasonable to pose the
problem as if the acoustic coupling actually happens on the middle surface. The
thickness function t retains a strong influence over the way in which the shell moves,
but has no direct effect on the acoustic coupling. Due to the smoothness assumption
(A2) on the chart function φ, the midsurface normal n(φ(x)) = a3(x) is well-defined.
The Reissner-Mindlin kinematic assumption (SM7) assures that the normal velocity
u · n is the same on both sides of the shell and is given by z · n, and therefore the
Helmholtz screen equation with Neumann data can be coupled with the Naghdi model
in a kinematically consistent way.

With the approximations (S1,S2), the Helmholtz equation (1d-f) on the exterior

of the shell Ω̃ = Φ(Ω) can be approximated by the following equation on the exterior of
the midsurface φ(Ω0) of the shell. To simplify the notation, we denote the midsurface
by

(SM20) Γ0
def
= φ(Ω0).

The approximation of (1d-f) is given by

∆ϕ(x̃) + κ2ϕ(x̃) =0 x̃ ∈ R3 \ Γ0(SM21a)

∂nϕ(x̃) =g(x̃) x̃ ∈ Γ0(SM21b) ∣∣∇ϕ · x̃/|x̃| − iκϕ∣∣ =O
(

1/|x̃|2
)

as |x̃| → ∞.(SM21c)
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The right hand side g in (SM21b) is derived from the right hand side in (1d). Let
x̃ = φ(x) and let x ∈ Ω0 be a point on the midsurface Γ0. If we use (SM5), (SM7)
and (S1,S2), then the right hand side −iωũ(x̃) · n(x̃) in (1d) corresponds to

(SM22) g(φ(x)) = −iωz(x) · n(φ(x)) = −iωz(x) · a3(x).

where φ(x), x ∈ Ω0, is a point on the midsurface Γ0.
Next, we recall the uniqueness result for the screen problem (SM21); the existence

result will be provided in Theorem SM2.7, following from the equivalence between
the screen problem and a corresponding boundary integral equation, established in
Lemma SM2.6.

Lemma SM2.5. Let (A1) and (A2) hold. If ϕ ∈
{
% ∈ H1

loc(R3\Γ0) : (∆+κ2)% =

0 in R3 \ Γ0 and % satisfies (SM21c)
}

solves (SM21) with g = 0, then ϕ = 0.

Proof. See [SM26, Lemma 2.1] and [SM16, Lemma 4.3.5].

We equivalently reformulate (SM21) as a boundary integral equation. The Green’s
function for the Helmholtz equation is

G(x̃, x̃′) =
exp(iκ|x̃′ − x̃|)

4π|x̃′ − x̃|
.

We extend the shell midsurface Γ0 to a Lipschitz continuous surface Γ ⊃ Γ0 such that
Γ is the boundary of a bounded Lipschitz domain G1 ⊂ R3. Thus,

(SM23) Γ0 ⊂ Γ = ∂G1.

We denote by γ− and γ+ respectively the trace operator from the interior and exterior
of G1, and by ∂−n and ∂+

n respectively the interior and exterior normal derivative on
∂G1. The boundary integral equation corresponding to (SM21) is derived from the
boundary integral equation for the Helmholtz equation for G1, see [SM26, p. 243].
Given boundary data from an exterior solution to the Helmholtz equation, the exte-
rior representation formula yields zero when computed at interior points. Likewise,
given boundary data from an interior solution to the Helmholtz equation, the inte-
rior representation formula yields zero when computed at exterior points; see [SM11,
Thm. 3.1]. Thus, for points interior to G1 we have

ϕ(x̃′) =

∫
Γ

∂−n ϕ(x̃)G(x̃, x̃′)− ∂n,x̃G(x̃, x̃′)γ−ϕ(x̃) dx̃

0 =

∫
Γ

∂n,x̃G(x̃, x̃′)γ+ϕ(x̃)− ∂+
n ϕ(x̃)G(x̃, x̃′) dx̃,

and for points exterior to G1,

0 =

∫
Γ

∂−n ϕ(x̃)G(x̃, x̃′)− ∂n,x̃G(x̃, x̃′)γ−ϕ(x̃) dx̃

ϕ(x̃′) =

∫
Γ

∂n,x̃G(x̃, x̃′)γ+ϕ(x̃)− ∂+
n ϕ(x̃)G(x̃, x̃′) dx̃.

In either case, the two equations add to

ϕ(x̃′) =

∫
Γ

G(x̃, x̃′) (∂−n ϕ(x̃)− ∂+
n ϕ(x̃))︸ ︷︷ ︸

=0 on Γ

+ ∂n,x̃G(x̃, x̃′) (γ+ϕ(x̃)− γ−ϕ(x̃))︸ ︷︷ ︸
=0 on Γ\Γ0

dx̃.(SM24)
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Let

(SM25) [ϕ]
def
= γ+ϕ− γ−ϕ

denote the jump of ϕ on the shell midsurface Γ0. Equation (SM24) immediately yields
the representation formula

ϕ(x̃′) =

∫
Γ0

[ϕ](x̃) ∂n,x̃G(x̃, x̃′) dx̃ for x̃′ 6∈ Γ0(SM26)

for the solution ϕ to the screen problem (SM21); see [SM26, p. 243]. Since we are
given Neumann boundary data in (SM21), we take the normal derivative of (SM26)
to derive an integral equation for the jump of ϕ across the shell midsurface Γ0.

To derive the boundary integral operator corresponding to the screen problem,
we first review the hypersingular operator corresponding to the Helmholtz equation
for Γ = ∂G1. The double-layer potential DL applied to ς ∈ L1(Γ) is

(
DLς

)
(x̃′) =

∫
Γ

∂+
n,x̃G(x̃, x̃′)ς(x̃) dx̃,

see, e.g., [SM12], and the hypersingular integral operator is defined by

D
def
= − ∂±nDL :H1/2(Γ)→ H−1/2(Γ).

The representation of 〈Dϕ, %〉H−1/2(Γ)×H1/2(Γ) can be found, e.g., in [SM23, Thm. 9.15]
and is given by the right hand side in (SM28b) below with Γ0 replaced by Γ.

The restriction of D to the surface patch Γ0 = φ(Ω0) is denoted DΓ0
. It is shown

in [SM26, Lemma 2.2] that the proper space for the jump [ϕ] is

(SM27) H̃1/2(Γ0) =
{
u ∈ H1/2(Γ) : supp(u) ⊂ Γ0

}
.

The physical significance of this is that the pressure jump at the edge is zero. We
define

(SM28a) DΓ0
: H̃1/2(Γ0)→ H−1/2(Γ0)

with

〈DΓ0 [ϕ], %〉H−1/2(Γ0)×H̃1/2(Γ0) =

∫∫
Γ0

G(x̃, x̃′)(nx̃ ×∇[ϕ]) · (nx̃′ ×∇%) dx̃dx̃′

− κ2

∫∫
Γ0

G(x̃, x̃′)([ϕ]nx̃) · (%nx̃′) dx̃dx̃′.(SM28b)

The next lemma establishes the equivalence between the differential equation (SM21)
and the integral equation (SM29) below. As mentioned before, the idea behind (SM29)
is taking the normal derivative of (SM26) and replacing the resulting left hand side
∂nϕ on the shell midsurface Γ0 be the boundary data g.

Lemma SM2.6. Assume that (A1) and (A2) hold and let the Neumann data g ∈
H−1/2(Γ0) be given. The function ϕ ∈ H1

loc(R3 \ Γ0) solves (SM21) if and only if its

jump [ϕ] ∈ H̃1/2(Γ0) solves the integral equation

DΓ0
[ϕ] = −g.(SM29)



SM10 H. ANTIL, S. HARDESTY, AND M. HEINKENSCHLOSS

Proof. This result was shown for smooth surfaces in [SM26, Theorem 2.6] but can
be easily extended to Lipschitz surfaces using the ideas from Costabel [SM12].

Theorem SM2.7. Assume that (A1) and (A2) hold and let the Neumann data
g ∈ H−1/2(Γ0) be given. The integral equation (SM29) has a unique solution [ϕ] ∈
H̃1/2(Γ0) that depends continuously on g, i.e., there exists a constant c > 0 such that

‖[ϕ]‖H̃1/2(Γ0) ≤ c‖g‖H−1/2(Γ0).

Proof. This result was shown for smooth surfaces in [SM26, Theorem 2.7] but can
be easily extended to Lipschitz surfaces using the ideas from Costabel [SM12].

Coupling of the Naghdi equations (SM14) with the boundary integral equation
(SM29) is discussed next, in §SM2.3. Later, in §3, we compute shape derivatives
of the coupled equations (SM34). Because the Naghdi chart function φ determines
the geometry for both the shell and boundary integral equations, this requires us to
formulate (SM29) on the reference domain Ω0.

Let Ω0 ⊂ R2, with the chart function φ ∈ C ⊂ W 2
∞(Ω0)3. The weak form to

be evaluated for the hypersingular operator D is (SM28). In order to transform this
integral over Γ0 = φ(Ω0) into an integral over Ω0, the quantities a3 and

√
a, defined

in (SM2) are needed.
Through transformation of the integral over Γ0 = φ(Ω0) into an integral over Ω0,

the product 〈DΓ0 [ϕ], %〉H−1/2(φ(Ω0))×H̃1/2(φ(Ω0)) becomes

〈D(φ)ψ, %〉Ω0

(SM30)

=

∫∫
Ω0

G(φ(x), φ(x′)) (a3(x′)×∇Φ−T (x′)∇̃ψ(x′)) · (a3(x)×∇Φ−T (x)∇̃%(x))√
a(x′)a(x) dx′dx

− κ2

∫∫
Ω0

G(φ(x), φ(x′)) (a3(x′)ψ(x′)) · (a3(x)%(x))
√
a(x′)a(x) dx′dx,

where Φ is defined in (SM4) and the derivative ∇̃ is defined via

∇̃ρ(x) =
(
∂x1ρ(x) ∂x2ρ(x) 0

)T
.

In (SM30) the notation D(φ) is used to emphasize that for the screen φ(Ω0) the

hypersingular operator depends on the chart function φ. We use ψ ∈ H̃1/2(Ω0) for
the jump in the velocity potential defined in the reference domain.

Corollary SM2.8. Under the assumptions of Theorem SM2.7 there exists a
unique solution ψ ∈ H̃1/2(Ω0) to

〈D(φ)ψ, %〉H−1/2(Ω0)×H̃1/2(Ω0) = −〈g ◦ φ, %〉H−1/2(Ω0),H̃1/2(Ω0) ∀% ∈ H̃1/2(Ω0).

(SM31)

where D(φ) is as given in (SM30). In addition, the solution depends continuously on
the data g, i.e., there exists a constant c > 0 such that

‖ψ‖H̃1/2(Ω0) ≤ c‖g ◦ φ‖H−1/2(Ω0).
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Proof. We recall that

〈DΓ0 [ϕ], %〉H−1/2(Γ0)×H̃1/2(Γ0) = 〈D(φ)ψ, % ◦ φ〉H−1/2(Ω0)×H̃1/2(Ω0),

where ψ = [ϕ] ◦ φ, DΓ0
and D(φ) are defined in (SM28b) and (SM30) respectively.

The assertions then follow by invoking Proposition SM2.1 and Theorem SM2.7.

SM2.3. The Coupled Shell and Boundary Integral Equations. In this
section we couple the models from §SM2.1 and §SM2.2 and prove existence and
uniqueness of the solution. Recall that φ ∈ C ⊂ W 2

∞(Ω0)3 is the chart function
representing the midsurface

Γ0 = φ(Ω0)

of the shell. For the rest of the paper, all function spaces are taken to be over C,
including S, defined in (SM13). The physical mid-surface displacement z, rotation
angle θ, and velocity potential ϕ are simply the real parts of these complex-valued
functions.

In the following, x denotes a point in Ω0 and x̃ denotes a point in R3\Γ0 or on Γ0.
The functions θ, z, η, y, f, ρ are defined on the reference domain Ω0, while the velocity
potential ϕ and the normal n are defined respectively on R3\Γ0 and on Γ0. Therefore,
the argument of n is φ(x) if, for example, we integrate over Ω0. For x̃ ∈ Γ0 = φ(Ω0)
we often write z(x) · n(x̃). In this case the argument x ∈ Ω0 of z is the point in the
reference domain Ω0 such that x̃ = φ(x).

First, we combine the Naghdi shell equations from §SM2.1 with the screen problem
(SM21) to approximate (1). We seek (θ, z) ∈ S, where S is defined in (SM13), and ϕ
in H1

loc(R3 \ φ(Ω0)) such that

K(θ, z; η, y)− ω2M(θ, z; η, y)

=

∫
Ω0

(
f(x) · y(x)− iωρ0[ϕ](φ(x)) y(x) · n(φ(x))

)√
a(x) dx(SM32a)

for all (η, y) ∈ S, and

∂nϕ(x̃) =− iωz(x) · n(x̃) x̃ ∈ φ(Ω0)(SM32b)

4ϕ(x̃) + κ2ϕ(x̃) =0 x̃ ∈ R3 \ φ(Ω0)(SM32c) ∣∣∇ϕ(x̃) · x̃/|x̃| − iκϕ(x̃)
∣∣ =O

(
1/|x̃|2

)
as |x̃| → ∞.(SM32d)

In (SM32a), the shell is driven by the given function f , specifying a time-harmonic
driving force applied to the shell at angular frequency ω = cκ, and by the jump
−iωρ0[ϕ] in the air pressure across the shell midsurface (see (SM25)), where ρ0 is the
density of the air.

Existence and uniqueness of solutions to the related problem of 3d elasticity (in-
stead of the Naghdi shell equations) coupled to standard Helmholtz integral equations
(instead of the screen integral equation) is addressed in the papers by Bielak, Mac-
Camy, Zeng [SM3] and Luke and Martin [SM21]. Uniqueness can fail in general if the
elastic body has a “Jones mode,” a free eigenmode that exhibits no surface motion in
the normal direction, and thus does not drive the acoustics. This is known to be pos-
sible for spheres and axisymmetric structures [SM21], but almost never happens for
general shapes, as shown by Hargé [SM17], since any sufficiently smooth boundary
can be approximated arbitrarily well by shapes that have no Jones modes. Exis-
tence and uniqueness results were later proven for other fluid-structure interaction
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problems. For example, Jentsch, Natroshvili [SM19, SM20] consider an anisotropic
inviscid fluid and an anisotropic thermoelastic body. However, it appears that exis-
tence and uniqueness of solutions to (SM32) has not been addressed in the literature.
In the following we extend the existence and uniqueness results in [SM3, SM21] to
the problem (SM32).

Jones modes in the context of Nadghi shells are defined as follows.

Definition SM2.9. The pair (θ, z) ∈ S, (θ, z) 6= 0 is called a Jones mode at
frequency ω if

K(θ, z; η, y)− ω2M(θ, z; η, y) = 0 for all (η, y) ∈ S
z(x) · n(φ(x)) = 0, x ∈ Ω0.

The following lemma characterizes conditions required for uniqueness to solutions
of (SM32).

Lemma SM2.10. Provided that there do not exist any Jones modes at frequency
ω, (SM32) has at most one solution.

Proof. It suffices to show that if (θ, z, ϕ) solves (SM32) with f = 0, then ϕ = 0
in R3 \ φ(Ω0). Given that this is true, ϕ = ∂nϕ = 0 on φ(Ω0), and therefore either
(θ, z) = 0, or (θ, z) is a Jones mode.

So let f = 0. Combining (SM32a,b) and taking (η, y) = (θ, z),

K(θ, z; θ, z)− ω2M(θ, z; θ, z) = ρ0ω

∫
Ω0

[ϕ](φ(x)) ∂nϕ(φ(x))
√
a(x) dx.

By symmetry of the shell bilinear form K (SM8), the imaginary part of the left-hand
side equals zero. Therefore,

0 = Im

(∫
Ω0

[ϕ](φ(x)) ∂nϕ(φ(x))
√
a(x) dx

)
= Im

(∫
Γ0

[ϕ](x̃) ∂nϕ(x̃) dx̃

)
,(SM33)

where we have used Γ0 = φ(Ω0). If Γ0 were a closed surface, (SM33) would be
exactly the condition needed to use a theorem of Rellich [SM27, Theorem 4.2] to
conclude that ϕ = 0 everywhere. To apply it here, we extend as in §SM2.2 Γ0 to a
Lipschitz surface Γ enclosing a bounded domain. The proof of lemma SM2.5 uses the
same geometric setting and arguments about transmission conditions, and we refer to
[SM16, Lemmas 5.3.1,4.3.5] for the details.

With this uniqueness result, the Helmholtz screen problem in (SM32) can be
replaced with the equivalent boundary integral equations (SM29), where g is given by
(SM22).

The coupled shell structure acoustic problem is given as follows: find (θ, z) ∈ S
and [ϕ] ∈ H̃1/2(Γ0) such that

K(θ, z; η, y)− ω2M(θ, z; η, y) =

∫
Ω0

(
f · y − iωρ0[ϕ](φ(x)) y · n

)√
a dx(SM34a)

〈DΓ0
[ϕ], %〉H−1/2(Γ0)×H̃1/2(Γ0)) =

∫
Γ0

iωz(x) · n(x̃) %(x̃) dx̃(SM34b)

for all (η, y) ∈ S and all % ∈ H̃1/2(Γ0).
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To discuss the existence and uniqueness of solution to the coupled system (SM34),
it will be useful to rewrite it as an operator equation. We define the linear operators

A0 : S → S ′, A1 : (L2(Ω0))5 → (L2(Ω0))5(SM35a)

B : L2(Γ0)→ (L2(Ω0))5, C : (L2(Γ0))5 → L2(Γ0)(SM35b)

such that

〈A0(θ, z), (η, y)〉S′,S =K(θ, z; η, y) + k0

∫
Ω0

θ(x) · η(x) + z(x) · y(x) dx(SM35c)

for all (θ, z), (η, y) ∈ S, and

〈A1(θ, z), (η, y)〉(L2(Ω0))5 = −ω2M(θ, z; η, y)− k0

∫
Ω0

θ(x) · η(x) + z(x) · y(x) dx,

(SM35d)

〈B[ϕ], (η, y)〉(L2(Ω0))5 =

∫
Ω0

iωρ0[ϕ](φ(x)) y(x) · n(φ(x))
√
a(x) dx,

(SM35e)

〈C(θ, z), %〉L2(Γ0) =

∫
Γ0

iωz(x) · n(x̃) %(x̃) dx̃(SM35f)

for all (θ, z), (η, y) ∈ (L2(Ω0))5 and all ϕ, % ∈ L2(Γ0). As before DΓ0
is the hyper-

singular operator defined in (SM28). Furthermore, given f ∈ L2(Ω0)3 we define the
linear functionals

F ((η, y)) =

∫
Ω0

f(x) · y(x)
√
a(x) dx and G = 0

for all (η, y) ∈ (L2(Ω0))5.
It is easy to show that under assumptions (A1) and (A2) on the midsurface

parametrization φ, the sesquilinear forms on the right hand sides in (SM35d-f) are
bounded and that therefore the operators A1, B and C are bounded. Furthermore, F
and G are bounded linear functionals. Under assumptions (A1)–(A4) from §SM2.1,
Lemma SM2.3 and Theorem SM2.7 imply that A0 andDΓ0 are continuously invertible.
Therefore, the system (SM34) can be written as an operator equation

(SM36)
(
I + T

)(
S
[ϕ]

)
=

(
A−1

0 F
D−1

Γ0
G

)
in (L2(Ω0))5 × L2(Γ0), where

(SM37) T
def
=

(
A−1

0 A1 A−1
0 B

−D−1
Γ0
C 0

)
∈ L

(
(L2(Ω0))5 × L2(Γ0)

)
.

Theorem SM2.11. Let assumptions (A1)–(A4) from §SM2.1 hold and let f ∈
L2(Ω0)3. If there exist no Jones modes, then there exists a unique solution (θ, z) ∈ S,

[ϕ] ∈ H̃1/2(φ(Ω0)) to (SM34). Furthermore, the solution depends continuously on f ,
i.e., there exists a constant C(φ) such that

‖(θ, z)‖2S + ‖[ϕ]‖2
H̃1/2(Γ0))

≤ C(φ)‖f‖2L2(Ω0)2

for all f ∈ L2(Ω0)3.
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Proof. The proof follows the method of [SM3], as used for 3d elasticity. Because
of Lemma SM2.3 and Theorem SM2.7 the application of T to S ∈ L2(Ω0))5 and

[ϕ] ∈ L2(Γ0) gives T
(
S, [ϕ]

)
∈ S × H̃1/2(Γ0). The compact embeddings of H1(Ω0)

and H̃1/2(Γ0) into L2(Ω0) and L2(Γ0), respectively [SM18], [SM24], imply that the
operator T ∈ L((L2(Ω0))5 × L2(Γ0)) is compact.

The operator on the left-hand side of (SM36) is a compact perturbation of the
identity and, thus, the Fredholm alternative applies. The system (SM36) is equivalent
to (SM32) and (SM34). In the absence of Jones modes, Lemma SM2.10 implies
uniqueness of the solution. Hence −1 is not an eigenvalue of T and, by the Fredholm

alternative I + T ∈ L
(

(L2(Ω0))5 × L2(Γ0)
)

is continuously invertible. In particular,

‖(θ, z)‖2(L2(Ω0))5 + ‖[ϕ]‖2L2(Γ0) ≤ C(φ)‖f‖2L2(Ω0)2

for all f ∈ L2(Ω0)3. Applying Lemma SM2.3 to (SM34a) implies

‖(θ, z)‖S ≤ C(φ)
(
‖f‖L2(Ω0)2 + ‖[ϕ]‖L2(Γ0)

)
≤ C(φ)‖f‖L2(Ω0)2

and applying Theorem SM2.7 to (SM34b) implies

‖[ϕ]‖H̃1/2(Γ0)) ≤ C(φ)‖z‖(L2(Ω0))3 ≤ C(φ)‖f‖L2(Ω0)2

for all f ∈ L2(Ω0)3.

For 3d elasticity coupled to the Helmholtz equation (or equivalently, to boundary
integral equations), there exist geometries for which Jones modes preclude uniqueness.
For shells, this can also happen. As a very simple example, if the shell is flat, then
the in-plane motions decouple from the out-of-plane motions. The in-plane problem
is elliptic, so there will be an infinite sequence of positive increasing eigenvalues,
corresponding to purely in-plane motions, which do not drive the acoustics through
(SM34b). If the forcing excites one of these motions, then uniqueness will fail for the
coupled problem (SM34). This situation seems exceedingly unlikely for general curved
shells, or for joined shells, where the in-plane motions of one would drive out-of-plane
motions of the other.

Theorem SM2.11 states the well-posedness (existence, uniqueness, and continuous
dependence on the data f) of the coupled system (SM34) in the Sobolev space S ×
H̃1/2(φ(Ω0)). Notice that H̃1/2(φ(Ω0)) depends on φ, and thus it is inconvenient
to compute the shape derivatives with respect to the chart function. To avoid this,
following the Naghdi geometry, we shall rewrite the entire coupled system (SM34)
in the reference coordinates representing Ω0 (we use (SM31)): Find (θ, z) ∈ S and

ψ ∈ H̃1/2(Ω0) such that

K(θ, z; η, y)− ω2M(θ, z; η, y) =

∫
Ω0

(f · y − iωρ0ψy · n)
√
a dx(SM38a)

〈D(φ)ψ, %〉H−1/2(Ω0)×H̃1/2(Ω0) =

∫
Ω0

iωz · a3 %
√
a dx(SM38b)

for all (η, y) ∈ S and all % ∈ H̃1/2(Ω0). See (SM30) for the definition of the differential
operator D(φ) in (SM38b).

Corollary SM2.12. Under the assumptions of Theorem SM2.11 there exist a
unique solution (θ, z) ∈ S and ψ ∈ H̃1/2(Ω0) solving (SM38). In addition, the solution
depends continuously on data, i.e., there exists a constant c(φ) > 0 such that

‖(θ, z)‖2S + ‖φ‖2
H̃1/2(Ω0))

≤ c(φ)‖f‖2L2(Ω0)2 .
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Proof. The well-posedness of (SM38) is due to Theorem SM2.11 in conjunction
with Proposition SM2.1 and Corollary SM2.8. We omit the details for brevity.

Equation (SM38) will be the state equation in the shape optimization problem
that we study in §4.

SM3. Shell and Integral Operator Differentiability. Here we only state
the statement and proof of Lemma 3.1 from the paper.

Lemma SM3.1. Let φ ∈ C be one-to-one on Ω0. If there exists σ > 0 such that∣∣∣(∇φ(x)T∇φ(x)
)−1
∣∣∣ ≤ σ ∀x ∈ Ω0, then:

1. The function φ has a Lipschitz-continuous inverse, i.e., there exists a c2 > 0
such that |x− x′| ≤ c2|φ(x)− φ(x′)| for all x, x′ ∈ Ω0.

2. There exists a constant c1 = c1(σ) > 0 such that for any h ∈ W 2
∞(Ω0)3 with

‖h‖W 2
∞(Ω0)3 < c1, the sum φ+ h ∈ C.

Proof. 1. Suppose that there is no c2 > 0 such that |x−x′| ≤ c2|φ(x)−φ(x′)| for
all x, x′ ∈ Ω0. Then there exists sequences {xk}, {x′k} in Ω0 such that

(SM39)
|xk − x′k|

|φ(xk)− φ(x′k)|
→ ∞.

Since Ω0 is bounded, there exist converging subsequences of {xk}, {x′k}. To simplify
the presentation, let limk→∞ xk = x∗ ∈ Ω0 and limk→∞ x′k = x′∗ ∈ Ω0.

If x∗ 6= x′∗, then (SM39) implies φ(x∗) = φ(x′∗). Under the assumption that φ is
one-to-one on Ω0, we get a contradiction.

Now consider the case x∗ = x′∗. Taylor expansion φ(xk)− φ(x′k) = ∇φ(x′k)(xk −
x′k) + o(|xk − x′k|) implies

|φ(xk)− φ(x′k)|2 = (xk − x′k)T∇φ(x′k)T∇φ(x′k)(xk − x′k)− o(|xk − x′k|2)

≥ 1

σ
|xk − x′k|2 − o(|xk − x′k|2) ≥ 1

2σ
|xk − x′k|2

for k sufficiently large. This inequality contradicts (SM39).
2. The matrix∇φ(x)+∇h(x) has full rank if and only if (∇φ(x)+∇h(x))T (∇φ(x)+

∇h(x)) = ∇φ(x)T∇φ(x) +∇h(x)T∇φ(x) +∇φ(x)T∇h(x) +∇h(x)T∇h(x) is invert-
ible. Since∣∣∣(∇φ(x)T∇φ(x)

)−1(∇h(x)T∇φ(x) +∇φ(x)T∇h(x) +∇h(x)T∇h(x)
)∣∣∣

≤
∣∣∣(∇φ(x)T∇φ(x)

)−1
∣∣∣ (2|∇h(x)||∇φ(x)|+ |∇h(x)|2

)
≤ σ

(
2‖h‖W 2

∞(Ω0)3‖φ‖W 2
∞(Ω0)3 + ‖h‖2W 2

∞(Ω0)3

)
for all x ∈ Ω0, the matrix (∇φ(x) + ∇h(x))T (∇φ(x) + ∇h(x)) is invertible for all
x ∈ Ω0 if for some δ ∈ (0, 1), σ

(
2‖h‖W 2

∞(Ω0)3‖φ‖W 2
∞(Ω0)3 + ‖h‖2W 2

∞(Ω0)3

)
≤ δ. The

latter inequality is satisfied for all h ∈W 2
∞(Ω0)3 with

‖h‖W 2
∞(Ω0)3 < −‖φ‖W 2

∞(Ω0)3 +
√
‖φ‖2W 2

∞(Ω0)3 + δ/σ =: c1.

Moreover, for such h,∣∣∣((∇φ(x) +∇h(x))T (∇φ(x) +∇h(x))
)−1
∣∣∣ ≤ σ

1− δ
∀x ∈ Ω0.

By part 1, φ+h has a Lipschitz continuous inverse and, consequently, is one-to-one.
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SM4. Transfer Function Optimization. This section includes the example
omitted from Section 4.1. This example illustrates that if there exists a shape g∗ that
produces exactly the response data the objective function seeks to match, and the
shape g∗ has a Jones mode that is driven by the forcing, gk → g∗, and c(gk, Uk;ω) = 0,
then ‖Uk‖U will be unbounded.

SM4.1. Existence of Optimal Solutions.

Example SM4.1. Consider the boundary value problem −u′′(y)− µu(y) = f(y),
u(0) = u(ρ) = 0 on the interval [0, ρ]. The parameter µ > 0 plays the role of the
driving frequency ω2. Using the transformation to reference coordinates x = y/ρ, this
can be recast as

−1/ρ2u′′(x)− µu(x) =f(ρx),(SM40a)

u(0) = u(1) =0.(SM40b)

We define c : R×H1
0 (0, 1)→ H−1(0, 1) as

〈c(ρ, u), v〉 =

∫ 1

0

1

ρ2
u′(x)v′(x)− µu(x)v(x)− f(ρx)v(x) dx.

The weak form of (SM40) is: Find u ∈ H1
0 (0, 1) such that 〈c(ρ, u), v〉 = 0 for all

v ∈ H1
0 (0, 1).

The length of the domain, ρ > 0, now acts as a shape parameter. The operator
−1/ρ2d2/dx2 has eigenfunctions and eigenvalues

ϕn(x) = sin(nπx), λn(ρ) = (nπ/ρ)2, n = 1, 2, · · · .

The Fredholm alternative applies to this problem: Unless

µ = λn(ρ) and (f(ρ ·), ϕn)L2 6= 0

for some n, the solution of (SM40) is u(x) =
∑∞
n=1 αn(ρ)ϕn(x), where

αn(ρ) =

2
(f(ρx),ϕn)L2

λn(ρ)−µ if µ 6= λn(ρ)

arbitrary otherwise.

Suppose that ρ ∈ R = [3/4, 5/4], and µ = π2. Then, λn = µ if and only if ρ = 1
and n = 1. Thus, uniqueness (and, depending on f , possibly also existence) of the
solution can only fail at ρ = 1.

Let f(x) = sin(πx) + sin(2πx). For ρ ∈ R with ρ 6= 1 the unique solution of
c(ρ, u) = 0 is u(ρ, x) =

∑∞
n=1 αn(ρ)ϕn(x) with2

αn(ρ) =
(−1)n+12nρ2

(n2 − ρ2)2π3
sin(ρπ) +

(−1)n+12nρ2

(n2 − 4ρ2)(n2 − ρ2)π3
sin(2ρπ).

Note that |α1(ρ)| → ∞ as ρ→ 1 and, consequently, ‖u(ρ)‖L2 →∞ as ρ→ 1.

2We use the identity∫ 1

0
h(x) sin(nπx)dx =

(−1)n+1h(1) + h(0)

nπ
−

1

n2π2

∫ 1

0
h′′(x) sin(nπx)dx.

With h(x) = sin(kρπx), k ∈ N, ρ 6= 1, this implies
∫ 1
0 sin(kρπx) sin(nπx)dx = n

(n2−k2ρ2)π sin(kρπ).
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Now we consider the optimization problem

min j(ρ, u)(SM41a)

s.t. c(ρ, u) = 0, ρ ∈ R, u ∈ H1
0 (0, 1),(SM41b)

with objective function

j(ρ, u) =

(
2(u, ϕ2)L2 − 2

(f, ϕ2)

3π2

)2

=

(
α2(ρ)− 1

3π2

)2

.

Since

lim
ρ→1

α2(ρ) =
1

3π2
,

any sequence ρk → 1, ρk 6= 1, gives

lim
k→∞

j(ρk, u(ρk)) = 0 = inf
{
j(ρ, u(ρ)) : c(ρ, u) = 0, ρ ∈ R, u ∈ H1

0 (0, 1)
}
,

but the optimization problem (SM41) does not have a solution. The fundamental
issue is that f drives both of the first two eigenfunctions, but the objective function is
sensitive only to the second.
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