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Outline

The problem

= What are interior-point methods?

= Complexity theory for convex optimization

= Narrowing the gap between theory and practice
= How practical are interior-point methods?

This presentation

= is focused on a brief overview and a few selected topics
= will inevitably omit many important topics and works
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| Part 1. The problem

= Constrained optimization
= Conic programming
= They are “equivalent”



Constrained Optimization (CO)

min{f(x): xl Ql R"}

The set Q can be defined by equalities
and inequalities. Inequalities create
most difficulties.

Q={x:h(x)=0,g9(x) £ 0}
h:R"® R”,g:R"® R*
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Conic Programming (CP)

min{<c,x > Ax=b, x| K}
(cone: x| Kb txI K,"t3 0)

= CP has a linear objective function
= Constraint set Q = {affine space} ] {cone}
= Difficulties hidden in the cone
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“Natural” Conic Programs
min{<c,x> Ax=Db, x| K}

= LP --- nonnegative orthant:
K ={xl R":x3 0}
= SDP --- semidefinite matrix cone:
K={XT R"": X =X"%0
= SOCP --- second order (ice cream) cone:
K ={(x,t)] R™ :|x|| £ t}
= Direct sums of the above
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Linear Objective Function

min f(x): xI QI R"}
min{t: f(x) £t,xI Q}
W.L.O.G, we can assume f(x)=<c,x>, i.e,,

min{<c,x>: xI Ql R"
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Q = Affine Space (1 Cone

QU {(xD:xI Q1 R"™
U {t(x,)): x] Q,t =1
U KN{(x,t):t=1

where K Isthe cone :

K °{(tx,t):t3 0,xI Q}
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Q => Affine Space[) Cone

A

Hence, CO = CP (theoretically convenient)
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Convex or Nonconvex

CO:  min{f(x):xi Q
CP: min{<c,x> Ax=Db,xI K}

= Complexity theory exists for convex programs
= f and Q are convex, or K is convex

= Local minima will all be global
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Part 2: What are
| Interior-Point Methods? (IPMs)?

= Main ideas

= Classifications:
= Primal and primal-dual methods
= Feasible and infeasible methods



] Main Ideas: Interior + Newton

CP: min{<cx> : Ax=Db, Xin K}
= Keep iterates in the interior of K
=  Apply Newton’s method (How?)



Newton’s Method

= Square Nonlinear systems:
= F(xX) = 0 (#equations = #variables)
= Unconstrained optimization:
= mn f(x)P Nf(x)=0
= Sufficient when f is convex
= Equality constrained optimization:
= 15t order necessary (KKT) conditions form a
square system F(x,y) = 0
= Inequality constrained optimization:
= KKT =» system with inequalities

= How do we apply Newton’s method?
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Primal IPMs (Barrier Methods)

Consider CP: min{<c,x> : Ax=b, x in K }
= Solutions are necessarily on the boundary
= Barrier function: F(x):int(K)® R
F(X)® +¥ as x® YK
= Subproblems for t > 0 (equalities only):
= Min {<c, x> +t F(X): AXx = b } = x(t)

= Under suitable conditions, the so-called central
path x(t) exists, andast—-> 0, x(t) > x*

s Newton’s method becomes applicable
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Log-Barriers have a long history

= Early works on Log-barrier methods:
= Frisch 1955 F(Xx)=-logx on {x >0}
= Fiacco & McCormick, 1968
=« Murray, Wright, 70s
= Convergence results exist (e.g. x(t) 2> x* )
= No computational complexity results
= Modern complexity theory for IPMs:
= Karmarkar on LP, 1984
= Many authors on LP, QP, LCP, SDP
= General theory: Nesterov and Nemirovskii, 1993
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Primal and Dual Conic Programs

= Primal and Dual CPs:
(P): min { <¢,x>: Ax=Db,x inK}
(D): max { <b,y>: A*y +s=¢,sin K* }
where A* is the adjoint of A,
s <AX, Y > =<X A*y >
and K* is the dual cone of K,
- K" ={y«(y,x)? 0," xI K}
= Weak Duality holds: (c,x)3 (b, y)
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Primal-Dual IPMs

= They solve the primal and dual together
= Most efficient in practice
= First proposed for LP
(Kojima/Mizuno/Yoshise 1990)

= They require strong duality:
» <C X*>=<Db, y*>

= Strong duality holds under reasonable conditions
for the usual cones (LP, SDP, ...... )
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Semidefinite Programming (SDP)

(P) :min{ (C,X):AX) =b, X T K}
(D) : max{ (b,y): A'(y) + S=C,SI K}

K=K ={XT R"": X=X">0}
= Optimization over matrix variables

= Applications:
= Systems and Control theory, statistics
= Structural (truss) optimization
= Combinatorial optimization
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SDP (continued):
= Optimality conditions: X, S in K

= Primal feasibility: AX)—-b=0
= Dual feasibility: A*(y) +S—-C=0
= Complementarity: XS=0 +tl

= Primal-dual methods for SDP:

= Keep X, S in K (positive definite)

= Perturb and apply Newton to equalities
= Keep an eye on the P-D central path

(X(£),y(t),5(1))
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An SDP Complication

= The system is non-square
AX)-b=0,A¥(y)+S-C=0,XS—-tl =0
= Many remedies:

= Helmberger/Rend|/Vanderbei/Wolkowisz,
Kojima/Shida/Hara, Monteiro, Nesterov/Todd,
Alizahde/Haeberly/Overton,......

= Polynomial complexity bounds established
= A unification scheme: (Monteiro, YZ, 1996)

PXSP 1 +(PXSP D - 2tl =0
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IPMs: Feasible vs. Infeasible

CP: min{<cx>:Ax=Db,xinK}
We already require iterates to stay in K.
How about the affine space?

s Feasible IPMs:

= Require iterates to stay in the affine space
= Easier to analyze, stronger results

s Infeasible IPMs:

= Not require iterates to stay in the affine space
= Easier to implement, more practical
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Feasible and Infeasible IPMs

CP: min{<c,x>: Ax=b, xinK}
e.g., 3x+y+2z =1, K = {(x,y,z) >= 0}

W

- Ax=b '\ Infeasible
g SR
' K
. > ,

“: softton

Feasible

X
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Part 3: Complexity theory for
] convex programming

= Two wings make IPMs fly:
= In theory, they work great
= In practice, they work even better



Theory for Primal IPMs

= Fort = 0, apply Newton’s method to:
min { <¢,x> +tFX): Ax=Db}
= F and K hold the keys

s Q1: What barriers are good for Newton?

s Q2: What cones permit good barriers?

General theory by Nesterov & NemirovsKii:
= Al: Self-concordant barrier functions

s A2: Essentially all convex cones
(that contain a non-empty interior but no lines)
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Self-concordant Barrier Function

= Strictly convex function in interior of K :
= The Hessian F” varies slowly (good for Newton)

(F"' (x)[hhH)” £ 4(F" (x)[hh])’

= The gradient F’ is bounded in a special norm
(implying F* varies slowly near the central path)

q = Ts_u!oK)<F'(x),[F"(x)]'lF'<x)><¥
Xl Int
= They guarantee good behavior of Newton on
the function <c¢,x> + t F(x) for varying t
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Examples

= Nonnegative Orthant: )
K —{x X3 0}l R

F(X)=- Iog(x) P g=n

= Symmetric, p05|t|ve semidefinite cone:
K={XT R"": X" =X >0}
F(X)=-log(det( X)) P g =n

= Log-barriers are optimal (achieving smallest
theta value possible)
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Complexity Results for Primal IPMs
(N&N 1993, simplified)

[ | Assume Xl » X(tl)
= Worst-case iteration number fort<et;:

O(~/q loge™®) or O(qloge™?)

short-step methods long-step methods
= Different strategies exist to forcet > 0

= A gap exists between theory and practice
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Elegant theory has limitations

= Self-concordant barriers are not computable
for general cone

= Polynomial bounds on iteration number do
not necessarily mean polynomial algorithms

= A few nice cones (LP, SDP, SOCP, ...) are
exceptions
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General Theory for Primal-Dual IPMs
(Nesterov & Todd 98)

= Theory applies to symmetric cones:
= Convex, self-dual (K = K*) , homogeneous
= Only 5 such basic symmetric cones exist
=« LP, SDP, SOCP, ..., are covered

= Requires strong duality: <c, x*> = <b, y*>
s Same polynomial bounds on #iterations hold
= Polynomial bounds exist for #operations

= A gap still exists between theory & practice
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Part 4. Narrowing the Gap
| Between Theory and Practice

= Infeasible algorithms
= Asymptotic complexity
(terminology used by Ye)



Complexity of Infeasible
Primal-Dual algorithms:

All early complexity results require feasible
starting points (hard to get)

Practical algorithms only require starting
points in the cone (easy)

Can polynomial complexity be proven for
infeasible algorithms?

Affirmative answers would narrow the gap
between theory and practice
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The answers are indeed affirmative

= For LP: YZ 1992, also for SDP: YZ 1996
= Numerous works since 1992
= Polynomial bounds are weaker than feasible case

= There are many infeasible paths in the cone, e.qg.,
A(X)- b=0 +t(A(X,)- b/t
A (y)+S- C=0 +t(A(y)+S- C)/t,
XS=0 +tl
Satisfied by (X,,V,,S,t,)if X,S =t
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Asymptotic Complexity

Why
than

Why

orimal-dual algorithms are more efficient
primal ones in practice?

ong-step algorithms are more efficient

than short-step ones in practice?

Traditional complexity theory does not
provide answers

An answer lies in asymptotic behavior (i.e.,
local convergence rates)
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IPMs Are Not Really Newtonian

= Nonlinear system is parameterized
= Full steps cannot be taken
= Jacobian is often singular at solutions

s Can the asymptotic convergence rate be
higher than linear? Quadratic? Higher?

= Affirmative answers would explain why far
less iterations taken by good algorithms than
predicted by worst-case bounds

= A fast local rate accelerates convergence
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Answers are all affirmative

=« LP: Quadratic and higher rates attainable

= YZ/Tapia/Dennis 92, YZ/Tapia 93, YZ/Tapia/Potra 93,
Ye/Guler/Tapia/YZ 93, Mehrotra 93, YZ/D.Zhang/96,
Wright/YZ 96, ......

= Extended to SDP and beyond

= IPMs can be made asymptotically close to Newton
method or composite Newton methods

F'(X)DX =- F(X)
F'(X)Dx =- F(x+ Dx)

= Idea: fully utilizing factorizations
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Part 5: Practical Performance of IPMs

= Remarkably successful on “natural” CPs

= IPMs in Linear programming:
= Now in every major commercial code
= Brought an end to the Simplex era

= SDP: enabling technology

a Are there efficient interior-point algorithms
for general convex programs in practice?

= How about for nonconvex programs?
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Nonlinear Programming

min{f(x):h(x)£0,i =1,...,m}
wheref,h : R"® R(possibly convex)

KKT conditions form a nonlinear system with
non-negativity constraints

Interior-point framework:
= Perturb and Apply Newton
= Keep iterates in the cone
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KKT system and Perturbation

Optimality (KKT) conditions:
Nf (X) + Nh(x)y 0
h(x)+z=0
yoz=0 +1€
y,z3 0
= Perturb KKT, then apply Newton

= Hopefully, (x(t),y(t),z(t)) > (x*,y*,z*¥)
(There is a close connection to log-barrier)
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Does it work?

= General convex programming:

= Yes, provided that derivatives are available and
affordable

= Global convergence can be established under
reasonable conditions (but not poly. complexity)

(e.g. El-Bakry/Tsuchiya/Tapia/YZ, 1992, ....... )
= Nonconvex programming:
= Yes, locally speaking
(local optima, local convergence)
= Continuing research (Session MS68 today)
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Recent Books on IPMs

= Nesterov and Nemirovskii, “Interior Point Methods in
Convex Programming”, SIAM 1993

= Wright, “Primal-Dual Interior Point Methods”, SIAM, 1997

= Ye, “Interior Point Algorithms: Theory and Analysis”, John
Wiley, 1997

= Roos/Terlaky/Vial, ” Theory and Algorithms for Linear
Optimization: An Interior Point Approach”, John Wiley,
1999

= Renegar, “"Mathematical View of Interior Point Methods in
Convex Programming”, SIAM, 2000

= Also in many new linear programming books
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A 15-line MATLAB code for LP
min {<c,X >: AX=Db,x>=0}

t0=cputime; [m,n]=size(A); x=sqrt(n)*ones(n,1); y=zeros(m,1);

z = x; p = symmmd(A*A'); bc = 1 + max(norm(b),norm(c));

foriter = 1:100
Rd=A"*y+2z-c; Rp=A*x-b; Rc=x.*z; residual=norm([Rd;Rp;Rc])/bc;
fprintf(‘iter %2i: residual = %9.2¢e',iter,residual);
fprintf(‘\tobj=%14.6e\n’,c'*x); if residual<5.e-8 break;end;
gap=mean(Rc); Rc=Rc-min(.1,100*gap)*gap; d=min(5.e+15,x./z);
B = A*sparse(1:n,1:n,d)*A’'; R = cholinc(B(p,p),'inf");
tl = x.*Rd - Rc; t2 = -(Rp + A*(t1./2)); dy = zeros(m,1);
dy(p)=R\(R'\t2(p)); dx=(x.*(A'*dy)+t1)./z; dz=-(z.*dx+Rc)./x;
tau = max(.9995, 1-gap); ap = -1/min(min(dx./x),-1);
ad = -1/min(min(dz./z),-1); ap = tau*ap; ad = tau*ad;
X = X +ap*dx; z = z + ad*dz; y = y + ad*dy;

End

fprintf('Done!\t[m n] = [%g %g]\tCPU = %g\n',m,n,cputime-t0);
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