Rice Header
CAAM Header

Colloquium - 3/05, 3:00PM, Duncan Hall 1064

Christoph Lehrenfeld

Institute for Numerical and Applied Mathematics
University of Göttingen

"High Order divergence-conforming Hybrid DG FEM for incompressible flows"

In this talk we consider the discretization of the unsteady incompressible Navier-Stokes equations in a velocity-pressure formulation. We present an efficient and high order accurate discretization method based on the following main ingredients: First, we make a distinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatment. We exploit this using operator-splitting time integration schemes which rely only on efficient solution strategies for two simpler sub-problems: a corresponding hyperbolic transport problem and an unsteady Stokes problem. Secondly, for the hyperbolic transport problem a spatial discretization with an Upwind Discontinuous Galerkin (DG) method and an explicit treatment in the time integration scheme is rather natural and allows for an efficient implementation. Thirdly, the discretization of the Stokes problems is tailored with respect to two important challenges: a proper treatment of the incompressibility constraint and efficient solution of arising linear systems. In order to fulfill the incompressibility constraint exactly we use an H(div)-conforming discretization of the velocity combined with discontinuous pressures. We discuss advantages of H(div) conforming discretizations such as energy-stability, pressure-robustness and error bounds which are semi-robust to the Reynolds number.

To enforce continuity of the velocity (weakly) also in tangential direction we apply a Hybrid DG formulation. For the task of solving linear systems, a discretization with Hybrid DG methods is better suited than standard DG methods. To improve the efficiency even further we apply a projection operator in the Hybrid DG formulation which allows to reduce the unknowns on element interfaces and thereby the number of globally coupled unknowns. To reduce the computational costs we introduce a modified version of the discretization using a relaxed H(div)-conforming finite element space. We present the method(s), discuss aspects of the temporal and spatial discretization, implementational aspects and numerical results.

Department of Computational and Applied Mathematics
6100 Main MS-134   Houston, TX 77005   713.348.4805

Rice University   |   School of Engineering   |   J. Joyce Young Memorial Fund   |   Pearlman Memorial Fund   |   Weiser Memorial Fund   |   Contact