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Lecture V

The singular value decomposition, in detection and

imaging
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Optimal illumination for detection

Let Π̂(xr,xs, ω) be the array impulse response matrix over the

bandwidth ω0 − B/2 < ω < ω0 + B/2, with Ns sources and Nr

receivers which we will assume are collocated and Ns = Nr = N .

If f̂(ω) = (f̂(xs, ω)) is a vector of illuminations in the frequency

domain, then

P̂f(ω) =

(∑

xs

Π̂(xr,xs, ω)f̂(xs, ω)

)

is the vector of received signals at the array, in the frequency do-

main. The total power of these signals is Ptot(f) =
∫

dω||Π̂(ω)f̂(ω)||2

Problem: Find P = maxf Ptot(f) with ||f ||2 =
∫

dω||f̂(ω)||2 = 1

This problem of optimal illumination for received power, that is,

for detection, is solved using the SVD of Π̂. We assume that we

have a fixed bandwidth of size B.
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The SVD of the array response matrix

The array impulse response matrix is symmetric but not hermi-

tian Π̂T (ω) = Π̂(ω). Let v̂j and ûj be its right and left singular

vectors respectively. Then its singular value decomposition is

Π̂(ω) =
p∑

j=1

σj(ω)ûj(ω)v̂∗
j(ω)

Here p ≤ N is the rank of Π̂ and σ1 ≥ σ2 ≥ · · · ≥ σp > 0.

Suppose that ω∗ = argmaxσ1(ω) over the bandwidth and let

f̂(ω) =
1

2δ
v̂1(ω

∗) , ω ∈ [ω∗ − δ, ω∗ + δ]

and zero outside this interval. Then for this illumination f we

have that Ptot(f) → P = σ2
1(ω

∗) as δ → 0. The optimal illumina-

tion is a narrow band signal proportional to v̂1(ω
∗).

4



Iterative time reversal, frequency domain

Consider the following iterative process (experiment). It is done

in the time domain but we describe it frequency by frequency:

1. Start with illumination f̂ . The received signal at the array is

Π̂f̂

2. Use the time reversed field as illumination. The received field

is Π̂Π̂f̂

3. Repeat these two steps n times.

The field received at the array has the form

K̂n(ω)f̂(ω) , K̂(ω) = Π̂(ω)Π̂(ω)

where K̂(ω) is the time reversal operator. It is hermitian and

positive definite for each frequency, and its eigenvalues are the

squares of the singular values. Therefore for large n we have

K̂n(ω)f̂(ω) ≈ σ2n
1 (ω)v̂1(ω)v̂∗

1(ω)f̂(ω)
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Iterative time reversal, time domain

In the time domain the signal received at the array after a large

number n of iterative TR has the approximate form∫
dωe−iωtσ2n

1 (ω)v̂1(ω)v̂∗
1(ω)f̂(ω)

By the Laplace asymptotic method it can be further approxi-

mated, up to a constant, by

e−iω∗tσ2n
1 (ω∗)v̂1(ω

∗)v̂∗
1(ω

∗)f̂(ω∗)

which is a time harmonic signal at the frequency where σ1(ω)

takes it maximum value.

With ITR we can get v̂1(ω) directly from the physical experiment

without doing the SVD. This however requires some special ad-

justments in order to get it over the full bandwidth. The other

singular vectors can also be obtained with ITR.

But why are we interested in the SVD of the response matrix

and ITR, which is a physical way of getting the SVD?
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Point scatterer models

Let M point scatterers be at yj, j = 1,2, ..., M . Point scatterers

means that the reflectivity is

ρ(z) =
M∑

j=1

ρj1|z−yj|≤δj
,

with the radii δj small compared to wavelengths. In this case the

impulse response matrix in the Born approximation is

Π̂(xr,xs, ω) =
M∑

j=1

ξj(ω)Ĝ(xs,yj, ω)Ĝ(xr,yj, ω)

The scattering amplitudes ξj(ω) depend on the reflectivities and

radii (or shape, in general), and on the frequency. Define the

array vector Green’s function

ĝ(y, ω) = (Ĝ(xr,y, ω))

Then the array impulse response matrix has the form

Π̂(ω) =
M∑

j=1

ξj(ω)ĝ(yj, ω)ĝT (yj, ω)
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Well separated point scatterers

The array vectors {ĝ(yj, ω)} are not of course orthogonal in gen-

eral. But

ĝ∗(yj, ω)ĝ(yl, ω) =
∑

xr

Ĝ(xr,yj, ω)Ĝ(xr,yl, ω)

is exactly the basic quantity that arises in imaging and time

reversal, and whose behavior we have analyzed in Lectures II-III.

We know that if the distance |yj − yl| is large compared to the

resolution limit of the array at this frequency, then these array

vectors are approximately orthogonal

ĝ∗(yj, ω)ĝ(yl, ω) ≈ ||ĝ(yj, ω)||2δjl

In any case we may assume that the {ĝ(yj, ω)} are linearly inde-

pendent.

In the well separated case the array impulse response matrix is

in SVD form.
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Well separated scatterers, continued

In the well separated case we have

Π̂ĝ(yl) =
M∑

j=1

ξjĝ(yj)ĝ
T (yj)ĝ(yl) ≈ ξl||ĝ(yl)||

2ĝ(yl)

Therefore assuming that the ξl are positive and that ξl||ĝ(yl)||
2

are arranged in decreasing order we have

v̂l =
ĝ(yl)

||ĝ(yl)||
, ûl = v̂l, σl = ξl||ĝ(yl)||

2

We conclude that the rank of the SVD can be associated uniquely

with the number of small scatterers, even of they are not well

separated, up to some special configurations.

We now look at time reversal and imaging with the SVD
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TR with the SVD

With illumination f the time reversal field at yS is

ΓTR
f (yS) =

∫
dωĝT (yS, ω)Π̂(ω)f̂(ω)

When f̂ = v̂l then

ΓTR
l (yS) =

∫
dωσl(ω)ĝT (yS, ω)ûl(ω)

and in the well separated case

ΓTR
l (yS) =

∫
dωξl(ω)||ĝ(yl, ω)||ĝT (yS, ω)ĝ(yl, ω)

What is interesting here is that by using the SVD we can se-

lectively do time reversal to the l-th scatterer. And by using

iterative time reversal we can do this completely in hardware,

without doing a numerical SVD. There are advantages to this

when SNR issues are important.
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Imaging with the SVD

In order to image we have to back propagate in a known medium,

which we take as a homogeneous one and let

ĝ0(y, ω) = (Ĝ0(xr,y, ω))

The Kirchhoff migration functional in then given by

IKM(yS) =
∫

dωĝT
0 (yS, ω)Π̂(ω)ĝ0(y

S, ω)

=
∫

dω
p∑

j=1

σj(ω)ĝT
0 (yS, ω)ûj(ω)v̂T

j (ω)ĝ0(y
S, ω)

In the case of well separated scatterers we have

IKM(yS) =
∫

dω
p∑

j=1

ξj(ω)|ĝ∗0(y
S, ω)ĝ0(yj, ω)|2

We see now how the basic resolution theory of the source point

spread function can be carried over to KM.
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Other imaging strategies

We see that KM imaging, which is the the unfiltered least squares

imaging functional (AHA ≈ I), is rather strange because it illu-

minates a spot and then back propagates to it with the same

array vector ĝ0(y
S, ω). If we choose a general illumination vector

f , a linear combination of the right singular vectors for example,

we have

IBP (yS; f) =
∫

dωĝT
0 (yS, ω)Π̂(ω)f̂(ω)

If we let f̂(ω) =
∑

dl(ω)v̂l(ω) then

IBP (yS; d) =
∫

dω
p∑

j=1

σj(ω)ĝT
0 (yS, ω)ûj(ω)v̂T

j (ω)
p∑

l=1

dl(ω)v̂l(ω)

IBP (yS; d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)ĝT
0 (yS, ω)ûj(ω)

We can now look for a way to choose the weights {dj(ω)} so as

to optimize the image.
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Optimal illumination

Let

Gj(ω) =
∫

dyS|ĝT
0 (yS, ω)ûj(ω)|2

with the integration over some window, and let

I(d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)Gj(ω)

Then we can try to find weights {dj(ω)} that minimize this ob-

jective function.

There is no reason to adhere to the array least squares criterion,

which leads to filtered back propagation (or back projection), as

a basis for imaging.

Criteria based on the quality of the image directly have many

advantages, especially in random media.
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Optimal subspace selection

Another way to introduce an optimization process using the SVD

is by subspace selection. Let

D
[
Π̂(ω);ω

]
=

p∑

j=1

σj(ω)dj(ω)ûj(ω)v̂∗
j(ω)

a subspace selector with weights {dj(ω)}. Now consider KM

imaging with it instead of Π̂. We have

IKM(yS; d) =
∫

dωĝT
0 (yS, ω)D

[
Π̂(ω);ω

]
ĝ0(y

S, ω)

or

IKM(yS; d) =
∫

dω
p∑

j=1

σj(ω)dj(ω)(û∗
j(ω)ĝ0(y

S, ω))2

If we now integrate |IKM(yS; d)| over an image window we see

that we get back an objective similar to the optimal illumination

criterion, which we must minimize over {dj(ω)}.
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Summary of SVD, TR and imaging methods

• The SVD of the array response matrix allows for selective

focusing with TR on small scatterers

• The SVD singular vectors for TR can be computed directly

with ITR without having to know the full response matrix in

advance

• The SVD can be used for optimal illumination, or optimal

subspace selection, for migration imaging that is based on

the quality of the image itself
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