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Lectures VII-VIII

Waves in random media: Layered media, the paraxial

approximation, radiative transport

Time reversal in random media, super-resolution,

statistical stability
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Waves in random media

We consider the wave equation in a random medium

1

c2(~x)

∂2u

∂t2
−△u = 0 , t > 0 , ~x ∈ R

d+1 ,

with d = 1,2 and the local wave speed

c−2(z,x) = c−2
0

[
1 + σ0µ

(
z

lz
,
x

lx

)]
.

Here z and x ∈ Rd are, respectively, the coordinates along and

transverse to the direction of propagation, and ~x = (z,x). The

random function µ models the fluctuations in the propagation

speed.

When the characteristic scale of variation in the transverse di-

rection lx is large compared to lz then we have a layered random

medium. When lx = lz = l then we have essentially isotropic

randomness.
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The three regimes of random wave propagation

• Layered: Very strong scattering in direction of propagation.

Wave localization, long wave codas

• Wave transport: Wave energy ”diffuses” by radiative trans-

port. The transport mean free path

• The paraxial or parabolic regime: one-way wave propaga-

tion for beams, with scattering into lateral directions and no

backscattering

• Layered and paraxial are approximations that have very well

developed mathematical theories. Real world phenomena are

somewhere in between
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Paraxial or parabolic approximation

We consider wave fields propagating mainly in the z direction

u(t,x, z) =
1

2π

∫
eiω(z/c0−t)ψ(z,x;ω/c0)dω

The complex amplitude ψ(z,x; k) satisfies the Helmholtz equa-

tion

2ikψz + ∆xψ+ k2(n2 − 1)ψ = −ψzz.

Here k = ω/c0 is the wavenumber and n(x, z) = c0/c(x, z) is the

random index of refraction relative to a reference speed c0. The

fluctuations of the refraction index have the form

n2(x, z) − 1 = σ0µ

(
z

l
,
x

l

)

They are a stationary random field with mean zero, variance

σ2
0 and correlation length l. The normalized and dimensionless

covariance is given by

R(z,x) = E{µ(z + z′,x + x′)µ(z′,x′)}.
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On the numerical simulation of µ

1. Write (in 1D): R(x) = (1/2π)
∫
dkeikxR̂(k), with R̂(k) the

power spectral density, and discretize the integral with mesh

size ∆k

2. Generate independent identically distributed complex random

variables µ̂n with mean zero and variance R̂(n∆k)∆k/2π, and

so that µ̂n = µ̂−n

3. The process µ∆k(x) =
∑
n e

in∆kxµ̂n is an approximate real-

ization of µ(x)
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Scales

• Lz, the characteristic distance in the direction of propagation.

• Lx, the length scale in the directions transverse to the direc-

tion of propagation. This is typically taken to be the width

of the propagating beam.

• k0 = 2π/λ0, the central wavenumber corresponding to the

central wavelength λ0.

• l, the correlation length of the random medium. It character-

izes the dominant spatial scale of the random fluctuations.

• σ0, the dimensionless standard deviation of the random fluc-

tuations in the medium.

In the asymptotic regimes that we consider here Lz and Lx are

large compared to l and λ0, and σ0 is small.
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Scaled, dimensionless wave equation

We obtain the dimensionless form of the equation by introducing

dimensionless variables by x = Lxx
′, z = Lzz′, k = k0k

′ and

rewriting it as

2ik
∂ψ

∂z
+

Lz

k0L2
x

∆xψ+ k2k0Lzσ0µ

(
zLz

l
,
xLx

l

)
ψ = − 1

Lzk0

∂2ψ

∂z2
,

after dropping the primes. We identify now the following three,

usually small, dimensionless parameters in the problem:

• ε =
l

Lz
, the ratio of the correlation length to the propagation

distance,

• δ =
l

Lx
, the ratio of the correlation length to the transverse

length scale, which is usually the beam width,

• θ =
Lz

k0L2
x

=
λ0Lz

2πL2
x

, the reciprocal of the Fresnel number, the

ratio of the diffraction focal spot of the beam to its width.
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Scaled equation, continued

In terms of these parameters we have

2ikψz + θ∆xψ+
k2σ0δ

2

θε2
µ(
z

ε
,
x

δ
)ψ = −θε

2

δ2
ψzz.

We assume that ε is the smallest parameter in the problem. It

then follows formally, but it is quite difficult to prove, that the

ψzz term is a lower order term and can be neglected.

2ikψz + θ∆xψ+
k2σδ

θ
√
ε
µ

(
z

ε
,
x

δ

)
ψ = 0 , z > 0

with ψ at z = 0 given and where

σ =
σ0δ

ε3/2
.

This scaled noise strength parameter is assumed to be indepen-

dent of ε and δ as these parameters tend to zero in the asymptotic

analysis.
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The white noise limit

We consider the limit ε→ 0 while δ and θ are fixed. This means

that ε is the smallest of the three parameters ε, θ, δ. Assume that

the CLT applies to the random field µ:

lim
ε→0

1√
ε

∫ z

0
µ

(
s

ε
,x

)
ds = B(z,x),

weakly in law, where B is a Brownian random field parameterized

by x. This means that for any test function h(x), in law

1√
ε

∫ z

0
µh(s/ε)ds 7→ Bh(z), z ≥ 0,

µh(z) =
∫

Rd
µ(z,x)h(x)dx , Bh(z) =

∫

Rd
B(z,x)h(x)dx.

The random field B(z,x) is Gaussian with mean zero and

E{B(z1,x1)B(z2,x2)} = R0(|x1 − x2|)min{z1, z2}.
Here R0 is the integrated correlation function R0(x) =

∫∞
−∞R(z,x)dz.
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The Ito-Schrödinger equation

In the white noise limit ε→ 0 the solution of the random partial

differential equation converges in law to the process defined by

the stochastic partial differential equation

2ikdzψ+ θ∆xψdz +
k2σδ

θ
ψ ◦ dzB

(
x

δ
, z

)
= 0

given here in the Stratonovich form. The Itô form is

2ikdzψ+ θ∆xψdz +
ik3σ2δ2

4θ2
R0(0)ψdz +

k2σδ

θ
ψdzB

(
x

δ
, z

)
= 0.

There are two small parameters left in the Itô-Schrödinger equa-

tion after we have taken the white-noise limit – the reciprocal

Fresnel number θ and the non-dimensional correlation length δ.

We can consider the following limits.
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High and low frequency; lateral diversity

• The low frequency limit and large lateral diversity limit: δ → 0

with θ fixed,

• the high frequency or geometric asymptotics limit followed

by the large lateral diversity limit: θ ≪ δ ≪ 1, that is, θ → 0

followed by δ → 0, and

• the combined scaling limit: θ ∼ δ ≪ 1 with θ → 0 and δ → 0

simultaneously.

We refer to the limit θ → 0 as the high frequency limit and to

the limit δ → 0 as the limit of large lateral diversity.
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Low frequency limit

We see that if we pass to the limit δ → 0 with a fixed θ > 0 we

arrive at the homogeneous Schrödinger equation

2ikψz + θ∆xψ = 0.

This is because we have an a priori bound ‖ψ(t)‖L2 = ‖ψ0‖L2

and for any deterministic test function η(z,x) we have by the Itô

isometry

E

[
k2σδ

θ

∫ z

0

∫
η(s,x)ψ(s,x)dzB

(x

δ
, s
)
dx

]2

=

(
k2σδ

θ

)2

E

∫ z

0

∫
η(s,x)η(s,x′)ψ(s,x)ψ(s,x′)R0

(
x − x′

δ

)
dxdx′ds→ 0 as δ → 0.

A similar bound holds for the third term and therefore conver-

gence in probability follows.
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Phase space

In the high frequency limit θ → 0 (whether coupled with the limit

δ → 0, or not) solutions of the Itô-Schrödinger equation become

oscillatory in time and space. Therefore, rather than studying

the limit of the solution itself we consider the limits of its Wigner

transform which resolves the wave energy of oscillatory fields in

the phase space and (unlike the spatial energy density) satisfies

a closed evolution equation.

We define the spatial Fourier transform and its inverse by

f̂(k) =

∫
dxe−ik·xf(x) , f(x) =

∫
dk

(2π)d
eik·xf̂(k) ,

where d = 1 or 2 is the number of transverse spatial dimensions.

The Wigner transform relative to the scale θ is

Wθ(z,x,p) =
1

(2π)d

∫

Rd
eip·yψ(x − θy

2
, z)ψ(x +

θy

2
, z)dy

The Wigner distribution is real, may be interpreted as phase

space wave energy. It is well suited for random media.
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Stochastic transport equation

Using the Itô calculus we find from the Ito-Schrödinger equa-
tion that the scaled Wigner distribution satisfies the stochastic
transport equation

dWθ(z,x,p) +
p

k
· ∇xWθ(z,x,p)dz =

k2σ2δ2

4θ2

∫ (
Wθ

(
z,x,p +

θq

δ

)
−Wθ(z,x,p)

)
R̂0(q)d

(2π)d

+
ikσδ

2θ

∫
dq

(2π)d
eiq·x/δ

(
Wθ

(
z,x,p − θq

2δ

)
−Wθ

(
z,x,p +

θq

2δ

))
dB̂(q, z).

We do the high frequency and large diversity limits with the Itô-

Wigner equation as a starting point.

We note that the L2 norm of the Wigner distribution is conserved

‖Wθ(z)‖L2(R2d) = ‖Wθ(0)‖L2(R2d)
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High frequency limit

When we take the high frequency limit we find that Wθ converges

weakly to Wδ satisfying the Itô-Liouville equation

dWδ(z,x,p)+
p

k
·∇xWδ(z,x,p)dz+

k2σ2

8
R

′′

0(0)△pWδdz = −kσ
2
d∇xB

(x

δ
, z
)
·∇pWδ.

We remark that R′′(0) < 0 so that this equation is well-posed.

This SPDE is connected to stochastic flows where solutions of

SDE’s play the role of characteristics (Kunita).
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Large diversity limit

The limiting Wigner distribution solves a stochastic PDE, in

which the coefficient of the random term fluctuates on the small

scale δ. When we subsequently take the limit of large lateral

diversity we find that the limiting Wigner distribution actually

becomes deterministic. We refer to this as the stabilization of

the Wigner distribution. Define W as the deterministic solution

of

∂W

∂z
(z,x,p) +

p

k
· ∇xW (z,x,p) +

k2σ2

8
R

′′
0(0)△pW = 0.

17



Moment formula

There are two simple and practical items to remember when

with waves in random media and how affect TR and imaging

calculations.

One is the moment formula:

E{Ĝ(xr,y, ω)Ĝ(xr,y
S, ω)} ≈ Ĝ0(xr,y, ω)Ĝ0(xr,y

S, ω)e
−k2ξ2ae

2L2

The other is statistical stability: When integrating over a suffi-

ciently wide frequency band we have
∫
dωĜ(xr,y, ω)Ĝ(xr,y

S, ω) ≈
∫
dωE{Ĝ(xr,y, ω)Ĝ(xr,y

S, ω)}

Thus, we under favorable conditions we have for example

∫
dω

∑

xr

Ĝ(xr,y, ω)Ĝ(xr,y
S, ω) ≈

∫
dω

∑

xr

Ĝ0(xr,y, ω)Ĝ0(xr,y
S, ω)e

−k2ξ2ae
2L2
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Time Reversal Schematic

y

ys

L L(1+ )δ

λ/2

xp

ξ

Range: L, Carrier wavelength λ, Array size a = (N − 1)λ/2.

Source at y, Search point at ys, Transducers at xp.

Remote sensing regime: λ << a << L.

Random medium: Correlation length l << L, fluctuation strength

σ << 1.
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Remarks on TR in RM

• Resolution in time reversal: λL
a , cross-range. It is the same

as the Rayleigh resolution of optical instruments

• Super-resolution in random media because of multiple scat-

tering: λL/ae, cross-range. The effective aperture ae can be

much larger that the physical aperture a. In random media,

resolution is better than the diffraction limit

• Statistical stability (self-averaging) of time-reversed and back-

propagated field. Broad-band and narrow-band signals. Super-

resolution is observed only in regimes where there is statistical

stability
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The time-reversed, back-propagated field

On the plane of the source, at a point with transverse coordinates

ξ, the time time harmonic field is

ψB(L, ξ, k) =
∫
Gθ(L, x, ξ; k)Gθ(L, η, x; k)ψ0(η, k)χA(x)dxdη

where Gθ is the (random) Green’s function. In the time domain

it is

ΨB(L, ξ, t) =
∫
e−iωtψB(L, ξ,

ω

c0
)dω

Because of the form of this field, and for many other reasons,

we introduce and use the Wigner distribution of ψ

Wθ(z, x, p) =
∫

dy

(2π)2
eip·yψ(z, x− θy

2
, k)ψ(z, x+

θy

2
, k)

and note that ψB can be written entirely in terms of Wθ.
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High frequency limit θ → 0

The Wigner distribution satisfies a linear stochastic equation,

the Ito-Wigner equation, that comes from the Ito-Schrödinger

equation using the Ito calculus. In the high frequency limit the

Wigner process converges weakly to the solution of the Ito-

Liouville equation

dzW + (
p

k
· ∇xW − k2D

2
∆pW )dz +

k

2
∇pW · ∇xdzB(

x

δ
, z) = 0

where D = −R′′
0(0)/4 and the wave number scales out: W =

W (z, x, p/k; k = 1). The expected value E{W} solves the PDE

Wz +
p

k
· ∇xW − k2D

2
∆pW = 0

with given initial conditions W (0, x, p; k).

The process W depends on δ but E{W} does not.

22



The mean of the time-reversed, back-propagated field

If we take a source field that is a directed beam

eip0·x/θψ0(
x

σs
, k),

with σs the lateral extent of the source, then in the white-noise

(ǫ→ 0) and high-frequency (θ → 0) limits we have

E{ψB(L, ξ, k)} = ψ0(·,−k) ∗W(·)(ξ)

where W is the point spread function

W(η) =

(
k

2πL

)2

χ̂A(
ηk

L
)e−η

2/(2σ2
M)

and

σM =
L

kae
, ae =

√
DL3

3

Here ae = ae(L) is the effective aperture of the array.
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Interpretation of the point spread function

If there is no scattering medium then D = 0 and

W(η) =

(
k

2πL

)2

χ̂A(
ηk

L
)

For a square aperture A = [−a
2,
a
2]

2

W(η) = W(η1, η2) =
1

π2η1η2
sin(

η1ka

2L
) sin(

η2ka

2L
)

The first zero of the sine function is at

ηF =
2πL

ka
=
λL

a
= Rayleigh resolution

If we define σF = L/ka, the Fresnel spot size, then when σF <<

σM , or a >> ae, multipathing does not alter the refocused spot

size of diffraction theory.

But if ae >> a then the point spread function is

W ≈
(

a√
2πae

)2
e−η

2/(2σ2
M)

2πσ2
M
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Self-averaging

When is the time-reversed, back-propagated field self-averaging?

This is a fundumental issue because it determines when super-

resolution is observable.

In the present setting there are two results:

• If the source is localized, σs ∼ θ, then, in the limit δ → 0, the

time harmonic field ψB is self-averaging

lim
δ→0

E{(ψB − E{ψB})2} = 0

• If the source is distributed, σs >> θ, then only in the time

domain, that is for ΨB(L, ξ, t), we have self-averaging in mean

square sense as δ → 0.

• What does δ → 0 mean? Provides cross-range diversity in

multipathing.
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Field theory for the Ito-Liouville equation

The self-averaging is based on the following theorem for the

Ito-Liouville process (with k = 1) defined by

dzW + (p · ∇xW − D

2
∆pW )dz +

1

2
∇pW · ∇xdzB(

x

δ
, z) = 0

with W (0, x, p) = χA(x):

For any z > 0 the integral

Jδ(z, x) =
∫
Wδ(z, x, p)dp

exists and

lim
δ→0

E{(Jδ − E{Jδ})2} = 0

where E{Jδ} is independent of δ.

This is proved by using properties of the SDE’s (random charac-

teristics) through which the Ito-Liouville equation can be solved.
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Time-reversed, back-propagated pulse

In the time domain and for a distributed source, the self-averaging

field, in the white-noise and high-frequency limit, is given by

ΨB(L, ξ, t) = e−i(p0·ξ+ωot)ψ0(ξ)

·
∫

{|ω|<Ω}
dω

2π
e−iωtĝ(−ω) χA ∗



e
−x2/2a2e

2πa2e



 (
Lc0p0
ω0 + ω

)

When ae << a, that is, no multipathing, then

ΨB(L, ξ, t) ∼ e−i(p0·ξ+ωot)ψ0(ξ)

·
∫

{|ω|<Ω}
dω

2π
e−iωtĝ(−ω) χA

(
Lc0p0
ω0 + ω

)

In this case, if the beam lands entirely withing the TRM then

the time-reversed and back-propagated pulse is

e−i(p0·ξ+ωot)ψ0(ξ)g(−t)
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Time-reversed, back-propagated pulse schematic

L

σs

ap0c0L
ω0

A directed field propagates from a distributed source of size σs

toward the time reversal mirror of size a. The time-reversed,

back-propagated field depends on the location of the mirror rel-

ative to the direction of the propagating beam.
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Time-reversed, back-propagated pulse with multipathing

When multipathing is strong, ae >> a, then the self-averaging

time-reversed and back-propagated pulse is given by

ΨB(L, ξ, t) ∼ e−i(p0·ξ+ωot)ψ0(ξ)

·
(

a√
2πae

)2 ∫

{|ω|<Ω}
dω

2π
e−iωtĝ(−ω) e

−1
2(

Lc0p0
ae(ω0+ω)

)2

Note that, remarkably, this expression is almost independent

of the time reversal mirror!

Use this formula to estimate the most important quantity in time

reversal with strong multipathing: the effective aperture ae.

Point the beam in different directions toward the TRM, measure

the time reversed pulse and estimate ae by fitting to the formula.
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Summary and conclusions

• Time reversal in a random medium is important because of

super-resolution and self-averaging, which are phenomena

that are difficult to analyze and understand quantitatively,

and require interesting mathematics.

• Applications abound, are very exciting and limited only by

the hardware, our imagination, and also our analytical un-

derstanding: Direct TR applications, Imaging, Communica-

tions.
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