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Why image edges?

• In array imaging of extended reflectors, information about the edges
and therefore its shape is masked by strong reflections from the
parts of the reflector facing the array

• We use the singular value decomposition (SVD) of the array data
operator in order to distinguish edge reflections from bulk reflections

• We substantiate mathematically the empirical notion that the
number of significant singular values is related to the reflector
information content in the array data

• We also generalize the result of BPT-06 regarding optimal properties
of edge illumination for point scatterers to edge illumination of
scattering by edges
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Outline

1. Brief mathematical formulation of array imaging

2. Imaging with selective subspace migration

3. Mathematical analysis in the Fraunhofer diffraction regime and
substantiation of the empirical relation between singular values and
object information content

4. The extended Fraunhofer regime
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Array imaging

Reflector
~0

~yS

~xr

~xs

Array with Nr receivers ~xr and
Ns sources ~xs.

• Denote by Π̂(~xr,~xs,ω) the Fourier transform in time of time signals
recorded at receiver ~xr generated at ~xs by the pulse

g(t) = exp[iω0t]
sin(Bt/2)

πt
.

• Form the array response matrix Π̂(ω) ∈ RNr×Ns

(Π̂(ω))r,s ≡ Π̂(~xr,~xs,ω).

• With collocated sources and receivers, N = Nr = Ns, it is a
complex symmetric matrix Π̂(ω)T = Π̂(ω) for each frequency in the
bandwidth ω0 − B/2 6 ω 6 ω0 + B/2.

G. Papanicolaou, Rice University May 12-16, 2008 CBMS Imaging in random media 4/33



Array imaging

• The array data Π̂(ω) is, in general, a nonlinear functional of the

reflectivity ρ(~y) of the object to be imaged, Π̂(ω) = Π̂(ω; ρ) We
want to recover if possible the reflectivity from the array data or,
more often, just its support.

• Imaging methods: General (nonlinear) least squares approximation
of array data using a forward, wave propagation model for the
scattering that produces the array data. It is clear that we need to
know the background in which lies the reflecting object to be
imaged. We are interested mainly in the reflectivity of the object but
have to get the background as well, if we do not already know it.

• Full LSQ is almost never done. Instead, a much simplified (linearized
in ρ, Born approximation) version of it is done, which amounts to
backpropagation from the array. This is equivalent to action on the
data by the adjoint to the reflectivity-to-data operator, which is a
data-to-reflectivity operator and hence an imager.
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Kirchhoff or travel-time Migration

Most commonly used since the early seventies: backpropagate the data
using travel times, τ(~x,~y) = d(~x,~y)/c (distance over speed) to a search
point ~yS in the image domain:

IKM(~yS; f̂) =

∫
|ω−ω0|6B/2

dω

N∑
s=1

N∑
r=1

exp[iω(τ(~xr,~y
S) + τ(~xs,~y

S)]

Π̂(~xr,~xs,ω)f̂(~xs,ω).

Here f̂(~xs,ω) is the illumination vector at the array.
This imaging functional reconstructs well the reflectivity when the array
and the bandwidth are large. Its basic mathematical theory, including its
relation to least squares, was carried out in 1980’s by Beylkin, Burridge,
Bleistein, Symes

G. Papanicolaou, Rice University May 12-16, 2008 CBMS Imaging in random media 6/33



Optimal illumination

Choose the illumination vector f̂(~xs,ω) so as to minimize some norm of
the (normalized) image:

minimize J(f̂) over f̂

where

J(f̂) =

∫ ∣∣∣∣∣ IKM(~yS; f̂)

max~y |IKM(~y; f̂)|

∣∣∣∣∣
2

d~yS ,

with
∫∑

s |f̂(~xs,ω)|2dω = 1
Basic result (BPT-06): For a point scatterer the optimal illumination is
concentrated at the edges of the array
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Selected Subspace Migration

Image with the filtered data

ISM(~yS;D, f̂) =

∫
|ω−ω0|6B/2

dω

N∑
s=1

N∑
r=1

exp[iω(τ(~xr,~y
S) + τ(~xs,~y

S)]

(
D
[
Π̂(ω);ω

])
r,s
f̂(~xs,ω).

Here the filtering operator D acting on data Π̂(ω) is

D
[
Π̂(ω);ω

]
=

N∑
j=1

dj(ω)σj(ω)ûj(ω)v̂∗j (ω),

where Π̂(ω) =
∑N
j=1 σj(ω)ûj(ω)v̂∗j (ω) is the SVD of Π̂(ω):(

Π̂(ω)v̂j(ω) = σj(ω)ûj(ω)
)
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Selected subspace migration

ISM(~yS;D, f̂) =

∫
|ω−ω0|6B/2

dω

N∑
s=1

N∑
r=1

exp[iω(τ(~xr,~y
S) + τ(~xs,~y

S)]

(
D
[
Π̂(ω);ω

])
r,s
f̂(~xs,ω)

We look at a simple special case

• f̂(~xs,ω) = 1; uniform illumination form the array

• Binary weights:

dj(ω) =

{
1 if j ∈ J(ω) ⊂ {1, . . . ,N}

0 otherwise.

Note: If D is the identity I: ISM(~yS; I, f̂) = IKM(~yS; f̂).
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Subspace selection strategies

• Kirchhoff migration:

JKM(ω) = {1, . . . ,N} .

• Detection, DORT (Fink-Prada 94): Keep strongest reflection (good
for detection, bad for imaging in general)

JDetect.(ω) = {1} .

• Edge illumination: Give up some robustness to noise (detection
capability) for the ability to focus selectively on the edges (imaging
capability)

JSM(ω; [a,b]) =

{
j |
σj(ω)

σ1(ω)
∈ [a,b]

}
,

here [a,b] ⊂ (0, 1).

Basic problem: How to choose the interval [a,b].
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Setup for numerical simulations

zx

y

h

b

b

a

a

B× L+ [−h/2,h/2]

A

~0

L

• Frequency 1.5MHz - 4.5MHz, c0 = 1.5km/s (ultrasound regime)

• Central wavelength: λ0 = 0.5mm

• L = 100λ0 = 5cm, a = 25λ0 = 1.25cm, b = 20λ0 = 1cm,
h = λ0/5 = 0.1mm
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Signal-to-noise ratio (SNR)

• The array data Π̂(ω) is not recorded perfectly at the array. There is
always noise, which becomes important when we try to image with
subspaces corresponding to small singular values.

• Noise here means: uncorrelated (white), zero mean, additive
Gaussian noise.

• Clutter effects (random inhomogeneities in the ambient medium) are
much harder to model and to analyze (BPT 03,05,06,07)

• Measure noise in decibels (db):

SNR in db = 10 log10

(
signal power

noise power

)
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Singular values of Π̂(ω) (box target)
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0dB SNR, 50× 50 array 10dB SNR, 10× 10 array

Green: true singular values. Blue: singular values for noisy data.

Dotted: largest singular value of the noise.
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Imaging a box target (50× 50 array)
J(
ω

)
z
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L
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0
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Imaging a box target with 0dB SNR (50× 50 array)
J(
ω

)
z
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Imaging a box target with 10dB SNR (10× 10 array)
J(
ω

)
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Imaging other targets (50× 50 array)
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ω
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Imaging rotated targets

Kirchhoff Detection SM [0.001, 0.2]
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Some basic facts about image resolution

• Array means that the sensors are so closely spaced that they can be
treated as a continuum, as an aperture

• For a linear array of size a, a point target at a distance L is imaged
with cross-range resolution λ0L/a, the resolution spot-size (Rayleigh
resolution limit). Here λ0 is the central wave length. The wave
number is k0 = 2π/λ0

• When imaging with broadband signals the range resolution is c/B,
which is the width of the probing pulse in units of length
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The Fraunhofer diffraction regime

zx

y

h

b

b

a

a

B× L+ [−h/2,h/2]

A

~0

L

• Spot-size λ0L/a� a (⇔ Fresnel number θa = k0a
2/L� 1), and

a2/L2 � 1/θa � 1.

• Small reflector b� a, θb = k0b
2/L� 1 , and b > λ0L/a.

• Thin reflector h� a� L, θh = k0h
2/L� 1 and h� L2/(k2

0a
2).
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Array response matrix model in the Fraunhofer regime

• For a prism target with reflectivity ρ(ξ,L+ η) = χB(ξ)ρL(η) and in

the Fraunhofer regime approximate Π̂(~xr,~xs,ω) by

Π̂F(~xr,~xs,ω) = k2

∫
B×L+[−h/2,h/2]

d~yρ(~y)Ĝ0(~xr,~y,ω)Ĝ0(~xs,~y,ω).

• Here with ~x = (x, 0) ∈ A and ~y = (ξ,L+ η) inside the target:

Ĝ0(~x,~y,ω) =
1

4πL
exp

[
ik

(
L+ η+

|x|
2

2L
−

x · ξ
L

)]

≈ exp [ik |~x − ~y|]

4π |~x − ~y|
= Ĝ0(~x,~y,ω).

• We study the continuum version of Π̂F(ω)

(Π̂F(ω)f)(~xr) =

∫
A

d~xsΠ̂F(~xr,~xs,ω)f(~xs).
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Singular Value Decomposition of Π̂F(ω)

• Proposition. If A is invariant under reflections about the origin
(−x ∈ A⇔ x ∈ A),

Π̂F(ω) =
ρ̂L(−2k)

4
U(ω)RAQk

L BAU(ω).

⇒ SVD of Π̂F(ω) is


σn[Π̂F(ω)] =

1

4
|ρ̂L(−2k)|σn[AQk

L BA]

vn[Π̂F(ω)] = U∗(ω)vn[AQk
L BA], and

un[Π̂F(ω)] = arg(ρ̂L(−2k))U(ω)Rvn[AQk
L BA].

• The operators (Af)(x) = χA(x)f(x) and Qk
L B = F−1

(
k
LB
)
F are

orthogonal projectors in L2(R2).
• The operators U(ω) and R, commute and are unitary:

(U(ω)f)(x) = (4πL)Ĝ0(~x,~y?,ω)f(x) = exp[ik(L+ |x|
2
/(2L))]f(x)

(Rf)(x) = f(−x) (reflection about the origin)

The operator AQk
L BA is a space and wavenumber limiting operator

(Slepian, Landau, Pollak).
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Physical interpretation of the factorization on Π̂F(ω)

• Physical meaning of U(ω)RAQk
L BAU(ω) = AU(ω)RQk

L BU(ω)A

• From right to left:

Restriction (of the illumination) to the array A;
Propagation to the reflector U(ω);
Reflection-diffraction RQk

L B;

Propagation back to the array U(ω);
Restriction (of the measurements) to the array A
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Space and wavenumber limiting operators

• The operator

AQk
L BA = (2π)−2((kLB)FA)∗((kLB)FA)

is self-adjoint, positive, and Hilbert-Schmidt (trace class) with
spectral radius 6 1.

• Singular functions
• are “generalized prolate spheroidal wave functions” (Slepian)
• can be extended into an orthogonal family in L2(R2).

• Singular values σj[AQk
L BA] measure energy concentration of right

(or left) singular function of (kLB)FA inside A (or kLB).

Singular values are constant in n until they plunge suddenly to zero at a
critical index. In the plunge region:

vj[(
k
LB)FA]

uj[(
k
LB)FA]

}
is localized near the edges of

{
A

k
LB

.

Localization observed experimentally by Komilikis, Prada and Fink, 1996.
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Subspace migration in the Fraunhofer regime

Proposition. Subspace migration images realized with a single singular
function vj[Π̂F(ω)] and a single frequency ω are,

ISM(~yS;ω) ∼ ρ̂L(−2k) exp[2ikηS]σ2
j [AQk

L BA]
∣∣uj [(kLB

)
FA
] (
k
LξS

)∣∣2 ,

where the search point is ~yS = (ξS,L+ ηS) and the symbol ∼ means
equality up to a positive multiplicative factor, independent of ω, j and
~yS.

Localization of uj
[(
k
LB
)
FA
] (
k
LξS

)
near the edges of kLB.

⇒ Focusing on the edges of

target B.

Imaging with eigenfunctions of the scattering operator: Nachman et al.
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Asymptotic results

• Eigenvalue distribution function, for 0 < δ < 1,

N(δ; θab) = #
{
j | σj[AQk

L BA] > δ
}

, where θab = kab/L.

• First order asymptotics (Landau 1975)

N(δ; θab) = (λL)−2 |A| |B| (1 + o(1))

 well known fact (Tanter, Thomas, Fink, . . .) since

N(δ; θab) ≈ (λL)−2 |A| |B| =
|B|

(λL)2/ |A|
=

target area

spot area
.

• Second order asymptotics (Widom conjecture 1982)

N(δ; λ) = (λL)−2 |A| |B|

+ (λL)−1 ln θab
4π2

ln
1 − δ

δ

∫
∂A

∫
∂B

dxdξ |nA(x) · nB(ξ)|

+ o(θab ln θab)

• Cases fully analyzed: 1D (Landau and Widom), half space, square
(Widom), bounds for 2nd order term (Gioev).
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Main results for imaging in the Fraunhofer regime

• The index N∗ at which the plunge occurs in the distribution of
singular vales is related asymptotically to the information content of
the reflector in the array data:

N∗ ∼

(
b
λL
a

)2

This had been expected in the imaging community.

• Illuminating with the right singular vector with index N∗ means
illuminating from the edges of the array. The image with this
illumination, at a fixed frequency, is proportional to the square of the
absolute value of the left singular vector with the same index. This
implies that the resulting image is concentrated near the edges of
the reflector.
This was first obtained analytically without PSWF (BPT 06), using
an optimal illumination approach
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Fraunhofer regime vs Extended Fraunhofer regime
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• Red = Fraunhofer regime
• Green = Extended Fraunhofer regime
• Blue = Computed

Ultrasonic non-destructive testing is in the extended Fraunhofer regime
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The Extended Fraunhofer regime (EFR)

• For a prism target with reflectivity ρ(ξ,L+ η) = χB(ξ)ρL(η) and in

the EFR we approximate Π̂(~xr,~xs,ω) by

Π̂Efr(~xr,~xs,ω) = k2

∫
B×L+[−h/2,h/2]

d~yρ(~y)ĜEfr
0 (~xr,~y,ω)ĜEfr

0 (~xs,~y,ω).

• Here with ~x = (x, 0) ∈ A and ~y = (ξ,L+ η) inside the target:

ĜEfr
0 (~x,~y,ω) =

1

4πL
exp

[
ik

(
L+ η+

|x|
2

2L
−

x · ξ
L

+
|ξ|

2

2L

)]

≈ exp [ik |~x − ~y|]

4π |~x − ~y|
= Ĝ0(~x,~y,ω).

• In the Fraunhofer regime we neglected the term |ξ|
2
/(2L) = O(θb).
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SVD of Π̂(ω) in the Extended Fraunhofer regime (EFR)

• Proposition. If A is invariant under reflections about the origin,

Π̂Efr(ω) =
ρ̂L(−2k)

4
U(ω)RAQ̃k

L BAU(ω).

• The operator Q̃k
L B is a non-Hermitian one:

(Q̃k
L Bf)(x) = (2π)−2

∫
dyf(y)q̂(y − x),

where q(ξ) = χk
L B(ξ) exp[iLk |ξ|

2
].

• Compare with Qk
L B = F−1(kLB)F:

(Qk
L Bf)(x) = (2π)−2

∫
dyf(y)χ̂k

L B(y − x).

• Eigenvalue distribution result can be formulated in the EFR using
pseudospectra (Landau 1975).
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Eigenfunctions for the square in the EFR regime
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ν1[C] ≈ 1.000 ν3[C] ≈ 0.995 ν6[C] ≈ 0.256 ν10[C] ≈ 1.707× 10−5
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|µ1| ≈ 0.944 |µ3| ≈ 0.568 |µ6| ≈ 0.227 |µ10| ≈ 1.188× 10−5
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Concluding remarks

• Is it possible to have a general theory with ”no” approximations,
other than the Born approximation (linearized scattering)?

• Analyze adaptive imaging (waveform design) by optimizing the

quality of the image for different pulses f̂(xs,ω) and subspace filter
weights dj(ω) 6= 1 (BPT IP-07).

• Random media: Extend the theory to CINT (coherent interferometry
BPT JASA-07) to edge detection

• Papers to look at are here:
http://math.stanford.edu/̃ papanico
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Space and frequency limiting
• A space-limited function f = Af has total energy:

‖Af‖2L2 = (2π)−2 ‖FAf‖2L2 .

• The energy of f measured in frequency on the set B is

(2π)−2 ‖BFAf‖2L2 .

• Finding space-limited functions that are best localized on the set B

in frequency amounts to solving

max
f=Af

{
R(f) = (2π)−2 ‖BFAf‖2L2

‖Af‖2L2

}
.

• The functional R(f) is a Rayleigh quotient of

(2π)−2AF∗BFA = AQBA

which is maximized by the eigenfunction v1[AQBA].
• The eigenfunction vn[AQBA] is the space-limited to A function

that is best localized in frequency on B, while being orthogonal to
the first n− 1 eigenfunctions.

• In general for n in the plunge region, vn[AQBA] is localized near
the edges of A and its Fourier transform near the edges of B.
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