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Passive Array Imaging in Clutter
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Array data: P (xr, t) for (xr, t) a set of receiver locations

in R
2 and time in R+.

Object: continuous distribution of sources in D

Goal: recover D in cluttered background.
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Active Array Imaging in Clutter
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Array data: Π(xs,xr, t) for (xs,xr, t) a set of source and

receiver locations in R
2 and time in R+.

Object: an extended scatterer with support in D

Goal: recover D in cluttered background.

Applications: Non-destructive testing, seismic, sonar

and broadband radar imaging.
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What is the clutter?

We assume that the background velocity c(x) consists of

a smooth part co(x), that is known or can be estimated

and the clutter: inhomogeneities that cannot be

precisely estimated

We model the clutter as a random process −→
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What is the clutter?

We write the index of refraction n(x) = c0/c(x) as

n2(x) = n2
0(x)

(
1 + σµ

(x

ℓ

))

n0(x): smooth and known (n0(x) = 1 in the numerics).

µ: statistically homogeneous random process with

mean zero and rapidly decaying correlation

ℓ: correlation length (scale of the inhomogeneities)

σ: strength of the fluctuations

C. Tsogka Array Imaging in Random Media – p.4



Example of clutter

simulated velocity profile in a well log

courtesy of Eric Dussaud
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Modeling the clutter

The random process µ is real valued with

mean zero, < µ >= 0

correlation function:

R(x1,x2) =< µ(x1)µ(x2) >

or by introducing x =
x1 + x2

2
, x̃ = x2 − x1

R(x, x̃) =< µ(x − x̃/2)µ(x + x̃/2) >

and we assume that the correlation function depends

only on the distance

R(x, x̃) = R(x̃)
C. Tsogka Array Imaging in Random Media – p.6



Synthetic realization of random media

on a rectangular grid we generate a filter F (x)

we compute the Fourier transform F̂ (k) of F (x)

we generate a white noise distribution Ŵ (k)

(< Ŵ >= 0, std=1, < Ŵ (k1)Ŵ (k2) >= δ(k1 − k2))

we compute µ(x) = F−1(Ŵ F̂ )

the correlation function of µ(x) is

R(x̃) = (2π)−d

∫
dkeik·exF̂ (k)F̂ (k)

we chose F so as to obtain the desired R
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Synthetic realization of random media

Examples of isotropic clutter correlation functions

Gaussian

R(|x1 − x2|) = e−
|x1−x2|

2

2ℓ2

Power low

R(|x1 − x2|) = (1 +
|x1 − x2|

ℓ
)e−

|x1−x2|
ℓ
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Synthetic realization of random media

2D example with gaussian correlation fct

Km/s

here the correlation length ℓ is the same in all

directions of propagation.
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Synthetic realization of random media

1D example : Anisotropic (layered) clutter
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Km/s

here the correlation length is infinite in one direction

and finite in the other one.
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Setup for the numerical simulations
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In the context of ultrasound non-destructive testing

Frequency range 150 − 450KHz, c0 = 3Km/s, λ0 = 1cm.

Linear array with N = 181 elements of aperture a = 90λ0. The range is

L = 90λ0. The objects are disks with diameter λ0 (Dirichlet).
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Setup for the numerical simulations

ar
ra

y

object

For the clutter:

µ has a Gaussian correlation function

R(x,x′) =< µ(x)µ(x′) >= R(|x − x′|) = e
−

|x−x
′|2

2ℓ2

with ℓ = 0.5λ0 and σ = 0.03
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Setup for the numerical simulations

Data obtained by solving the wave equation in time and 2D space (FEM + PML)

̺(x)
∂v

∂t
+ ∇p = 0

κ(x)
∂p

∂t
+ divv = f(t)δ(x− xs)

̺(x) = 1

κ(x) = 1
̺c2(x)

We need to resolve all the scales involved (wavelength ∼ correlation length) →

heavy computations

For the active array case we have 3000 × 3000 points resulting to 9M × 3

unknowns and about 13000 iterations in time.
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Data on the array: traces

Passive array Active array

The clutter impedes the imaging process as the significant multipathing of the waves by

the inhomogeneities results to noisy data traces (the noise is not simply additive)
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Migration imaging

Passive array: imaging functional for search point yS

IKM(ys) =
∑

r

P (xr, τ(xr,y
S)) =

∑

r

∫

B

dω

2π
P̂ (xr, ω)G0(xr,ys, ω)

with G0(xs,y
s, ω) = eiωτ(xs,ys) and τ(x,y) = |x − y|/c0

the travel time in the known smooth background (here

homogeneous)

Active array: imaging functional for one source

IKM(ys) =
Nr∑

r=1

P (xs,xr, τ(xs,y
s) + τ(xr,y

s))

=

Nr∑

r=1

∫
dω

2π
P̂ (xs,xr, ω)G0(xs,ys, ω)G0(xr,ys, ω)
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Migration results

Passive array Active array
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length is scaled by λ0

the search domain is a square 20λ0 × 20λ0 centered at

the objects

the pixel size is λ0/2.
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Migration results

Passive array Active array
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Migration results

Passive array Active array

80 85 90 95
38

40

42

44

46

48

50

52

54

56

58

cr
os

s-
ra

ng
e 

in
 λ

0

range in λ
0

80 85 90 95
38

40

42

44

46

48

50

52

54

56

58

cr
os

s-
ra

ng
e 

in
 λ

0
range in λ

0

Classical migration does not work in clutter. To make

migration work we should remove the delay spread:

7 trace denoising ? (noise is not additive)

4 we use the coherent interferometry (CINT)
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Coherent interferometry (CINT)

we cross-correlate the traces locally in space and time:

cross-correlation in space is limited by the

decoherence length Xd

cross-correlation in time is limited by the delay

spread Td

we call these local cross-correlations coherent

interferograms

CINT consists in migrating the coherent interferograms

to the search point ys using G0(xr,y
s, ω)
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CINT imaging functional

For one source located at xs, we compute

ICINT(ys; Ωd, κd) ∼

∫
dω

∫

|ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

Q̂(xr,xs, ω;ys)Q̂(xr′,xs, ω′;ys)

with Q̂(xr,xs, ω;ys) = Π̂(xr,xs, ω)e−iω[τ(xs,ys)+τ(xr,ys)] .
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CINT imaging functional

For one source located at xs, we compute

ICINT(ys; Ωd, κd) ∼

∫
dω

∫

|ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

Q̂(xr,xs, ω;ys)Q̂(xr′,xs, ω′;ys)

we cross-correlate nearby frequencies |ω − ω′| ≤ Ωd,

with Ωd the decoherence frequency (∼ 1/Td)

and nearby receivers

X (ω, κd) =
{

r, r′ = 1, . . . , N ; |xr − xr′| ≤ Xd(ω) = co

ωκd

}
.

Ωd and κd are clutter-dependent coherence parameters

that must be estimated from the data.
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CINT imaging functional

For one source located at xs, we compute

ICINT(ys; Ωd, κd) ∼

∫
dω

∫

|ω−ω′|≤Ωd

dω′
∑ ∑

r,r′∈X(ω+ω′

2
,κd)

Q̂(xr,xs, ω;ys)Q̂(xr′,xs, ω′;ys)

CINT can be also viewed as a statistically smoothed

migration.

The smoothing of the image depends on the decoher-

ence parameters.
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Adaptive Selection of κd and Ωd

How can we find Ωd and κd ?

We can derive (theoretical) formulae for Ωd and κd.

This is model dependent. (L. Borcea, G. Papanicolaou, CT,

Interferometric array imaging in clutter, Inverse Problems, 2005.)

The decoherence parameters can be estimated

adaptively during the image formation process.

(L. Borcea, G. Papanicolaou, CT, Adaptive interferometric imaging in clutter and

optimal illumination, Inverse Problems, 2006.)

Lets assume for the moment that we know the

“optimal” Ω∗
d and κ∗

d.
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CINT results

Passive array
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Results for three different realizations of the clutter. Top: migration. Bottom: CINT
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CINT results

Active array
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Results for three different realizations of the clutter. Top: migration. Bottom: CINT
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CINT results

Xd = a, Ωd = B Xd = X∗
d

, Ωd = Ω∗
d Xd < X∗

d
, Ωd < Ω∗

d
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Fixed clutter realization: effect of decoherence parameters on the image. Left: no

smoothing. Middle: optimal smoothing. Right: too much smoothing.

Top row: passive array. Bottom row: active array.
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Adaptive Selection of κd and Ωd

base the selection of κd,Ωd on the image itself !

4 minimize the image support (sparse representation

that reduces the blurring)

4 minimize rapid oscillations in the image.
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Adaptive Selection of κd and Ωd

base the selection of κd,Ωd on the image itself !

4 minimize the image support (sparse representation

that reduces the blurring)

4 minimize rapid oscillations in the image.

We minimize the objective functional

O(ys; Ωd, κd) = ‖JN (ys; Ωd, κd)‖L1(D)+α ‖∇ysJN (ys; Ωd, κd)‖L1(D) ,

JN (ys; Ωd, κd) =
√

|ICINT(ys; Ωd, κd)|/ sup
ys∈Ds

√
|ICINT(ys; Ωd, κd)|

we use α = 1
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Implementation

Introduce a tiling (hω, hx(ω)) of the (ω,x) plane,
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��������

ω

x

ω1 ω2 · · ·

Tij

Nij

hx(ωi)

hω

we approximate ICINT(ys) by,

J (ys) =
∑

(xr,ω)∈a×B

∑

(xr
′,ω′)∈N (ω,xr)

Q̂(xr,xs, ω;yS)Q̂(xr
′,xs, ω′;yS)
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Implementation

Introduce a tiling (hω, hx(ω)) of the (ω,x) plane,
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ω

x

ω1 ω2 · · ·

Tij

Nij

hx(ωi)

hω

For tile centered at (xj, ωi), we have

Ωd = 2hω and Xd(ωi) = 2hx(ωi) = κ−1
d c0/ωi
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Adaptive CINT results

We use the NOMADm software package (C. Audet, J. Dennis, M. Abramson), that

uses a mesh-adaptive direct search method for constrained, nonlinear, mixed

variable problems.

For this example Ω∗
d

= B/5 and κ∗
d

= 0.125.
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Imaging resolution

migration resolution in homogeneous media

in range : O
(

c0
B

)

in cross-range : O
(
λL

a

)
= O

(
c0L
ωa

)

CINT resolution in clutter (Ωd < B & Xd < a )

in range : O
(

c0
Ωd

)

in cross-range : O (Lκd) = O
(

c0L
ωXd(ω)

)

for Ωd ≪ B & Xd ≪ a

4 incoherent imaging should be used (diffusion)

D = c0ℓ∗

3

CINT works for L < ℓ∗ (in numerics ℓ∗ = 75λ0)
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Real data: measurements

Concrete structure to be imaged

data provided by K. Mayer, University of Kassel, Germany.

simulation in homog. medium: f0 = 200KHz, c0 = 4207m/s

experimental data: f0 = 150KHz, cL = 4150m/s

Transmitter and receiver: Krautgrämer G0,2R
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Real data: measurements

Measurement acquisition geometry

T R
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Real data: measurements

Measurement acquisition geometry

T R
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Real data: measurements

Measurement acquisition geometry

T R

There is no array here the aperture is synthetic as in SAR.
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Real data: measurements

Measurement acquisition geometry

T R

Simulated data traces in homogeneous structure
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The CINT functional

We rewrite the CINT imaging functional

ICINT(yS,Ωd, κd) =

∫

B

dω

∫

|ω−ω′|≤Ωd

dω′
∑

xm∈a

∑

|xm−xm
′|≤Xd(ω)

Q̂(xm −
d

2
,xm +

d

2
, ω,ys)Q̂(xm

′ −
d

2
,xm

′ +
d

2
, ω′,ys)

Q̂(xs,xr, ω,yS) = P̂ (xs,xr, ω)e−iω(τ(xs,yS)+τ(xr,yS))

with

xm: the midpoint moving on the array.

d: distance between transmitter and receiver (fixed).

xs = xm −
d

2
, xr = xm +

d

2
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Non-destructive testing results

Simulated data traces in homogeneous structure

Kirchhoff migration results
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Non-destructive testing results

Data traces in the concrete structure

Kirchhoff migration results

C. Tsogka Array Imaging in Random Media – p.22



Non-destructive testing results

Kirchhoff migration results

CINT results
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