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The Time reversal process
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The Time reversal process
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The source sends a pulse

The response is recorder at all array elements

The recorded signals are time-reversed and re-emitted

The wave focuses to the original source position
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Applications/Physical experiments

M. Fink & al
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IEEE Ultrasonics Symp. Proc., 1, pp. 681-686, Montreal, 1989.

Time-reversed acoustics, Scientific American, 281, pp. 91-97, 1999.

Time Reversal of Electromagnetic Waves, Phys. Rev. Letters, 92, 2004.
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Experiments: underwater acoustics

W. A. Kuperman & al

Phase conjugation in the ocean: Experimental demonstration of an acoustic

time-reversal mirror, JASA, 103, pp. 25-40, 1998.

A long-range and variable focus phase-conjugation experiment in shallow

water, JASA, 105, pp. 1597-1604, 1999.

Iterative time reversal in the ocean, JASA, 105, pp. 3176-3184, 1999.
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Experiments: random media

M. Fink & al
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source
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Random multiple scattering of ultrasound. I. Coherent and ballistic waves,

Phys. Rev. E, 64, 2001.

Random multiple scattering of ultrasound. II. Is time reversal a self-averaging

process?, Phys. Rev. E, 64, 2001.

C. Tsogka Array Imaging in Random Media – p.3



Time reversal : model

sx

z

y

ps xp

y

yf(t)

point source located at y = (0, 0, L) sends pulse f(t)

array element xp = (xp, 0, 0) receives sp,

sp = f(t) ∗ G(xp,y, t) =
1

2π

∫ ∞

−∞

f̂(ω)Ĝ(xp,y, ω)dω

ŝp(ω) = f̂(ω)Ĝ(xp,y, ω)

C. Tsogka Array Imaging in Random Media – p.4



Time reversal : model

sx

z

y

ps xp

y

yf(t)

the signals sp are time reversed and re-emitted into the

real medium

the field at search point y
S = (ξS , zS) is

Γ̂TR(yS, ω) = f̂(ω)
∑

p

Ĝ(xp,y, ω)Ĝ(xp,y
S , ω)
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Time reversal in random media

Fundamental properties

statistical stability & super-resolution

C. Tsogka Array Imaging in Random Media – p.5



Time reversal in random media

Fundamental properties

statistical stability & super-resolution

Theoretical studies (and references there in)
J.F Clouet, J.P Fouque, A time reversal method for an acoustical pulse

propagating in randomly layered media, Wave Motion, 25, pp. 361-168, 1997.

P. Blomgren, G. Papanicolaou, H. Zhao, Super-Resolution in Time-Reversal

Acoustics, JASA, 111, pp. 238-248, 2002.

G. Bal, G. Papanicolaou, L. Ryzhic, Self averaging in time-reversal for the

parabolic wave equation, Stoch. Dyn., 2, pp. 507-531, 2002.

G. Papanicolaou, L. Ryzhic, K. Solna, Statistical stability in time reversal,

SIAM J. Appl. Math., 64, pp. 1133-1155, 2004.
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Time reversal in random media

Fundamental properties

statistical stability & super-resolution

The regime (scaling)

remote sensing: a ≪ L

weak fluctuations: σ ≤ 5%

important multipathing: λ0 ∼ ℓ ≪ a

broad-band is essential !

L. Borcea, G. Papanicolaou, C. Tsogka, Theory and applications of time

reversal and interferometric imaging, Inverse Problems, Vol 19, pp.

S139-S164, 2003.
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Setup for the numerical simulations

λ 0

λ 0λ 0

100

100
Source

absorbing medium

ar
ra

y

L=90

In the context of ultrasound non-destructive testing

Frequency range 150 − 450KHz, c0 = 3Km/s, λ0 = 1cm.

Linear array with N = 11 elements of aperture a = 5λ0. The range is L = 90λ0.

The source is a point.
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Setup for the numerical simulations

ar
ra

y

source

For the clutter:

µ has a Gaussian correlation function

R(x,x′) =< µ(x)µ(x′) >= R(|x − x
′|) = e

−
|x−x

′|2

2ℓ2

with ℓ = 0.5λ0 and σ = 0.03
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Data on the array: traces

Homogeneous Clutter
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The clutter “helps” the time-reversal process as the significant multipathing of the waves

by the inhomogeneities results to an array with a larger effective aperture!
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Time reversal results

ΓTR(yS, t) at y
S = (ξ, zS = L)

Homogeneous Clutter (2 realizations)
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Time reversal: resolution analysis

To estimate the spatial resolution in cross-range, let us

evaluate ΓTR at the exact range zS = L and at the

correct arrival time t0.

In homogeneous media we get

ΓTR
0 (ξ, L; t0) ≈ C sinc

(
πξa

λ0L

)
e
− ξ2

2σ2
0

with σ0 =
2λ0L

Ba

narrow-band: sinc function
λ0L

a
+ Fresnel zones

broad-band: gaussian ∼ λ0L

a
no Fresnel zones
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TR focusing in homogeneous media

ΓTR
0 (ξ, L; t), t × ξ : [−2, 2]ms × ξ ∈ [−10, 10]λ0

Theory Numerics
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Time reversal: resolution analysis

To estimate the spatial resolution in cross-range, let us

evaluate ΓTR at the exact range zS = L and at the

correct arrival time t0.

In random media we get

ΓTR
R (ξ, L; t0) ≈ Ce

− ξ2

2σ2
R

with σR =
λ0L

2πae

the focal spot size becomes ∼ λ0L

ae

instead of ∼ λ0L

a

ae: effective array aperture (=
√

DL3)
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TR focusing in random media

ΓTR
R (ξ, L; t), t × ξ : [−2, 2]ms × ξ ∈ [−10, 10]λ0

Homogeneous Random: Theory Numerics
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Effective aperture estimation

It is important in applications (wireless, sonar, etc) to

know the size of the focal spot or equivalently the

effective aperture.

One way to do this, is experimentally by measuring the

size of the focal spot (not feasible in practice).

We propose to estimate ae using an imaging method

(MF or CINT).
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Matched Field Imaging (MF)

sx

z

y

ps xp

y

yf(t)

point source located at y sends pulse f(t)

array element xp receives sp,

ŝp(ω) = f̂(ω)Ĝ(xp,y, ω)

the signals sp time reversed and re-emitted into a

fictitious medium
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Matched Field Imaging (MF)

sx

z

y

ps xp

y

yf(t)

the field at search point y
S is

Γ̂IM (yS, ω) = f̂(ω)
∑

p

Ĝ(xp,y, ω)Ĝ0(xp,y
S , ω)

to image we use the matched field method (MF):

ΓMF(yS) =

∫
dω

∣∣∣Γ̂IM (yS, ω)
∣∣∣
2
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Matched Field vs Time reversal

Time reversal

ΓTR
R (ξ, L; t0) ≈ Ce

− ξ2ae
22π2

λ2
0L2

ae unknown parameter that depends on the statistics of

the random medium
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Matched Field vs Time reversal

Time reversal

ΓTR
R (ξ, L; t0) ≈ Ce

− ξ2ae
22π2

λ2
0L2

ae unknown parameter that depends on the statistics of

the random medium

Matched Field

ΓMF(ξ, L + η) ≈ Ce
− ξ2

2(L+η)2
( L

ae
)
2
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Matched Field vs Time reversal

Time reversal

ΓTR
R (ξ, L; t0) ≈ Ce

− ξ2ae
22π2

λ2
0L2

ae unknown parameter that depends on the statistics of

the random medium

Matched Field

ΓMF(ξ, L + η) ≈ Ce
− ξ2

2(L+η)2
( L

ae
)
2

Estimate ae by matching it to the numer. comp. field

(need L ⇒ get it from arrival times)
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Matched Field vs Time reversal

Matched Field: resolution loss

homogeneous random
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Matched Field vs Time reversal

Time Reversal: super-resolution

homogeneous random
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Matched Field vs Time reversal

Using the MF estimator for three realizations of the

random medium we obtain

ae = 9.22λ0, 10.49λ0 and 9.26λ0.

The theoretical plot for ΓTR
R (ξ, L; t) is obtained using

ae = 10λ0.
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TR focusing random media

ΓTR
R (ξ, L; t), t × ξ : [−2, 2]ms × ξ ∈ [−10, 10]λ0

Homogeneous Random: Theory Numerics
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ae estimation using CINT

We consider here the same numerical setup with a

bigger array composed by 101 elements, which means

that a = 50cm.

Homogeneous Clutter
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ae estimation using CINT

We consider here the same numerical setup with a

bigger array composed by 101 elements, which means

that a = 50cm.

Using the adaptive CINT we find the decoherence

parameters Ωd and κd. From κd we can get another

estimate for ae as,

ae = Lκd =
c0L

ωXd(ω)

For the same three realizations of the random medium

we obtain the following estimates.

ae = 9.33λ0, 10.93λ0, and 11.47λ0.
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More challenging examples
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Not well separated objects

0

Scatterers

0

λ 0λ 0

λ

ar
ra

y

L=90
d

d

d=3

λ100

100

absorbing medium

frequency range 150 − 450KHz, c0 = 3Km/s, λ0 = 1cm

linear array with N = 100 elements of aperture a = 49.5λ0
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Not well separated objects

scatterers

ar
ra

y

frequency range 150 − 450KHz, c0 = 3Km/s, λ0 = 1cm

linear array with N = 100 elements of aperture a = 49.5λ0

ℓ = 0.5λ0, σ = 0.03 and Gaussian correlation function:

R(x,x′) = R(|x − x
′|) = e

−
|x−x

′|2

2ℓ2
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Data on the array: traces
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Imaging results

KM-Homogeneous KM-clutter CINT-clutter
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There is not enough resolution to distinguish the

scatterers ⇒ we need selectivity (SVD)
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A crack

0

λ 0λ 0

100

100

absorbing medium

ar
ra

y

L=90

object

λ

Frequency range 150 − 450KHz, c0 = 3Km/s, λ0 = 1cm.

Linear array with N = 100 elements of aperture a = 49.5λ0. The range is

L = 90λ0. Object size is b = 12λ0 (Dirichlet).
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A crack

object

ar
ra

y

For the clutter:

µ has a Gaussian correlation function

R(x,x′) =< µ(x)µ(x′) >= R(|x − x
′|) = e

−
|x−x

′|2

2ℓ2

with ℓ = 0.5λ0 and σ = 0.03
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Data on the array: traces

Homogeneous Clutter
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Imaging results

KM-Homogeneous KM-clutter CINT-clutter
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Not enough resolution to obtain a good estimate of the

size of the scatterer ⇒ we need selectivity that we

obtain using the SVD of the response matrix (full

matrix is needed).
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SVD of the response matrix

The singular value decomposition of Π(ω) is

Π̂(ω) =

N∑

j=1

σj(ω)ûj(ω)v̂⋆
j (ω),

⋆ denotes complex conjugate and transpose.

σj(ω) ≥ 0 are the singular values and ûj(ω), v̂j(ω) are

the orthonormal left and right singular vectors.

Because Π̂(ω) is symmetric, we have ûj(ω) = v̂
⋆
j (ω).
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Data filtering

We define the filtered data

D(ω, d)Π̂(ω) =
N∑

j=1

dj(ω)Pj(ω)Π̂(ω)

=
N∑

j=1

dj(ω)σj(ω)ûj(ω)v̂⋆
j (ω),

where Pj(ω) = ûj(ω)û⋆
j(ω) is the projection matrix onto

the space spanned by the j-th left singular vector.

the coefficient dj(ω) is given by

dj(ω) =





1 if j ∈ J(ω)

0 otherwise.
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Data filtering

We define the filtered data

D(ω, d)Π̂(ω) =
N∑

j=1

dj(ω)Pj(ω)Π̂(ω)

=
N∑

j=1

dj(ω)σj(ω)ûj(ω)v̂⋆
j (ω),

J(ω) determines which singular vectors we keep:

For J(ω) = {1, . . . , N}, we keep all the singular

vectors and the filter becomes the identity.

For J(ω) = {1}, we only keep the singular vector

that corresponds to the 1-st singular value. This is

similar to the DORT method by Prada et al.
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Choosing the set J(ω)

J(ω) = 1 is good for detection not for imaging.

J(ω) can be chosen via an optimization approach

based on the quality of the image. This is feasible

when the number of significant singular values is small

(L. Borcea, G. Papanicolaou, CT, Optimal illumination and waveform design for

imaging in random media, J. Acoust. Soc. Am., 2007).

J(ω) can be chosen so that the normalized singular

values σj(ω)/σ1(ω) of Π̂(ω) belong to some interval

[a, b] with 0 < a < b < 1,

J(ω; [a, b]) =

{
j

∣∣∣∣
σj(ω)

σ1(ω)
∈ [a, b]

}
.
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Selected subspace migration

For points y
s in the search domain, we compute

ISM(ys) =

Nr∑

r=1

Nr∑

s=1

∫
dω[D(ω, d)Π̂(ω)]r,sG0(xs,ys, ω)G0(xr,ys, ω)

we replace Π̂(ω) by D(ω, d)Π̂(ω) and sum over sources

and receivers.

The same can be done with CINT, we call the resulting

functional SCINT.
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Four scatterers: imaging results
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top row: homogeneous, bottom row: cluttered

J(ω) is chosen with optimization
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A few words on the theory (crack)

The number of significant singular values of Π̂(ω) is

N(ω) ≈ b/(λL/a): the number of focal spots that fit in

the object.

The significant singular values are close to a constant

value and then they plunge quickly to zero.

The singular vectors corresponding to singular values

in the plunge region contain information about the

boundary of the object. Information about the

boundary is redundant in the plunge region.
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A few words on the theory (crack)

The analysis uses properties of space and

wavenumber limited functions. In the case of the crack

the singular functions are the prolate spheroidal

wavefunctions and they can be computed analytically.

For cracks the analysis is done in L. Borcea, G.

Papanicolaou and CT, Optimal waveform design for

array imaging, Inverse Problems, 2007.

For more general objects in L. Borcea, G.

Papanicolaou and F. Guevara Vasquez, Edge

illumination and imaging of extended reflectors, SIAM

Journal on Imaging Sciences, 2008.
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The singular values of Π̂(ω)
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The singular values of Π̂(ω) for the homogeneous (continu-

ous line) and the cluttered (.− line) medium for frequencies

200kHz (left), 300kHz (middle) and 400kHz (right). The ver-

tical line is the theoretical transition value N(ω) = b/(λL/a)

which is approximately 5, 7 and 9 respectively.
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Imaging results

The results are displayed in a rectangular domain of

size 5λ0 × 20λ0. The pixel size is λ0/2 × λ0/2.

The decoherence parameters are κd = 0.12 and

Ωd = B/3 = 100Hz.

The notation SM [a, b] (or SCINT [a, b]) indicates that

selected subspace migration (or CINT) is used with

J(ω; [a, b]) =

{
j

∣∣∣∣
σj(ω)

σ1(ω)
∈ [a, b]

}
.

Detection means that only the first singular vector is

used, J(ω) = {1}.
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Imaging results - Homogeneous

Migration Detection SM[0.1, 0.2] SM[0.3, 0.5]
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Imaging results - Clutter

CINT Detection SCINT[0.3, 0.5] SCINT[0.4, 0.5]
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Some challenges

generate realistic data (3D)!

develop faster (smarter) algorithms for solving the

wave equation (not resolving all the scales)

optimization algorithms (big number of unknowns)

apply imaging methodologies to real data (seismic,

sonar) ...

generalize methods to other type of waves (elastic,

electromagnetic).
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