CAAM 335 · MATRIX ANALYSIS
Spring 2018 · Rice University

Instructors: Jesse Chan (jesse.chan at rice.edu), Duncan Hall 3023, 713-348-6113
Nabil Chaabane (nabil.chaabane at rice.edu), , Duncan Hall 2001
Babhru Joshi (babhru.joshi at rice.edu), Duncan Hall 2118.

Teaching Assistant: Chen Liu (chen.liu at rice.edu)

Lectures: Chan: MWF 2:00-2:50pm, Herzstein 210.
Chaabane: MWF 9:00-9:50pm, Duncan Hall 1064.
Joshi: MWF 9:00-9:50pm, Duncan Hall 1075.

Web Site: http://www.caam.rice.edu/~caam335

Office Hours: Office hours are held at the instructors’ office unless specified otherwise.
Monday: Chaabane 1:00-2:00pm.
Tuesday: Chaabane 1:00-2:00pm, Joshi 2:00-3:00pm (in Duncan Hall 3110).
Wednesday: Chan 3:00-4:00pm
Thursday: Joshi 1:00-2:00pm (in Duncan Hall 3110)
Friday: Chan 3:00-4:00pm

Recitations: TBD (Recitations start the second week of classes)

Course objectives: Students should learn how to characterize the solution of systems of linear equations and linear least squares problems, apply basic solution techniques to linear problems involving electrical circuits and planar trusses, compute the eigendecomposition of matrices and apply it to solve linear dynamical systems, and compute the singular value decomposition and apply it to data compression and linear least squares problems.

Prerequisites: (MATH 212 or MATH 222) AND CAAM 210.
Less formally: you should be familiar with multivariable calculus and elementary matrix manipulations (matrix addition and multiplication, Gaussian elimination), and be able to write MATLAB programs.

Grading: 40% homeworks, 60% exams. (Class participation and improving performance on the exams will be considered when assigning borderline grades.)
Homeworks: Homeworks will be assigned roughly once a week. Typically a homework assignment is due one week after it has been posted. Unless otherwise stated, you may collaborate with other students, but you must write up your solutions separately. Transcribed solutions are unacceptable. You may not consult solutions from previous sections of this class.

Most problem sets will be assigned via the CANVAS course site. Visit the CANVAS site and the course web-page regularly. The lowest homework grade will be dropped.

Exams: There are three exams. Each exam will each account for 20% of the final grade. The first two exams are take-home, timed, closed-book exams. The final exam is scheduled. Room and time for the 3rd exam will be determined by the Registrar’s office later this semester.

Each exam must be your individual, unassisted effort; indicate compliance by writing out in full and signing the traditional pledge.

Late Policy: Homeworks and exams must be turned in on time. As a reminder, the lowest homework grade will be dropped.

Required Reading: Linear Algebra in Situ (Fall 2017 Edition) by Steven Cox. Available as a course pack from the campus store.

Supplemental notes are available on the CANVAS course site and updated as the semester progresses.

Recommended Reading:
- Gilbert Strang, Introduction to Applied Mathematics
- Lars Ahlfors, Complex Analysis, 3rd ed.
- D. J. Higham & N. J. Higham, MATLAB Guide

Programming: Homework assignments may require MATLAB programming. Your solutions should adhere to good programming standards, and must not be copied from other students.

Any student with a disability requiring accommodation in this course is encouraged to contact the instructor during the first week of class, and also to contact Disability Support Services in the Ley Student Center.