Lectures: Section 1 (Heinkenschloss, Matthias): MWF 11:00–11:50AM, DCH 1070
Section 2 (Magruder, Caleb): MWF 11:00–11:50AM, HRZ 211
Section 3 (Pantic, Sanja): MWF 11:00–11:50AM, MEL 254

Web Site: http://www.caam.rice.edu/~caam335

Instructors: Matthias Heinkenschloss (heinken @ rice.edu), Duncan Hall 3088, 713–348–5176
Office Hours: Tuesdays & Fridays 1:00-2:00pm, Duncan Hall 3088.

Caleb Magruder (Caleb.Magruder @ rice.edu), Duncan Hall 2105
Office Hours: Tuesdays 5:00-6:00pm in Duncan Hall 3110.

Sanja Pantic (sanja @ rice.edu), Duncan Hall 3085, 713–348–6160
Office Hours: Tuesdays 1:00-3:00pm, Duncan Hall 3085.

Recitations: Mondays 7:00-8:30pm, Sewall Hall 309

Teaching Assistant: Chen Liu (Chen.Liu @ rice.edu), Duncan Hall 2104
Office Hours: Mondays 4:00-5:30pm in Duncan Hall 1044
(On 9/12 office hours will be held in Duncan Hall 3110).

Course objectives: Students should learn how to characterize the solution of systems of linear equations and linear least squares problems, apply basic solution techniques to linear problems involving electrical circuits and planar trusses, compute the eigendecomposition of matrices and apply it to solve linear dynamical systems, and compute the eigenvalue problem and Laplace transform via complex integration.

Outcomes: Apply the Fundamental Theorem of Linear Algebra to characterize solutions of linear systems.
Solve linear systems and linear least squares problems, and apply these techniques to problems involving electrical circuits and planar trusses.
Compute eigenvalues and eigenvectors of matrices.
Apply the eigendecomposition to solve linear dynamical systems.
Compute the eigendecomposition and inverse Laplace transform via complex integration.
Compute the singular value decomposition and it apply it to solve linear least squares problems.

Prerequisites: MATH 212 and CAAM 210
Less formally: you should be familiar with multivariable calculus and elementary matrix manipulations (matrix addition and multiplication, Gaussian elimination), and be able to write MATLAB programs.
Grading: 40% homeworks, 60% exams. (Class participation and improving performance on the exams will be considered when assigning borderline grades.)

Homeworks: Homeworks will be assigned roughly once a week. Typically a homework assignment is due one week after it has been posted. Unless otherwise stated, you may collaborate with other students, but you must write up your solutions separately. Transcribed solutions are unacceptable. You may not consult solutions from previous sections of this class.
Most problem sets will be assigned via the OWL-Space course site. Visit the OWL-Space course site and the course web-page regularly.
The lowest homework grade will be dropped.

Exams: There are three exams. Each exam will each account for 20% of the final grade. The first two exams are take-home, timed, closed-book exams. The final exam is scheduled. Each exam must be your individual, unassisted effort; indicate compliance by writing out in full and signing the traditional pledge.

Late Policy: Homeworks and exams must be turned in on time.

Required Reading: Linear Algebra in Situ (Fall 2016 Edition) by Steven Cox. Available as a course pack from the campus store.

Recommended Reading: Carl Meyer, Applied Matrix Analysis and Linear Algebra
Gilbert Strang, Introduction to Applied Mathematics
Lars Ahlfors, Complex Analysis, 3rd ed.
D. J. Higham & N. J. Higham, MATLAB Guide

Programming: Homework assignments may require MATLAB programming. Your solutions should adhere to good programming standards, and must not be copied from other students.

Any student with a disability requiring accommodation in this course is encouraged to contact the instructor during the first week of class, and also to contact Disability Support Services in the Ley Student Center.