Worksheet #1: Differential equations, modeling physics and finite differences

(1) Classify the differential equations: ODE, PDE, linear, non-linear, constant coefficient, variable coefficient, order, etc.
(a) \(x \frac{\partial u}{\partial x} - t \frac{\partial u}{\partial t} + u = 0 \)
(b) \(\cos(u) \frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = \sqrt{x^2 + t^2} \)

(2) Let \(x_1(t), x_2(t) \) and \(x_3(t) \) denote the three unknown functions of \(t \). The following is a set of linear differential equations
\[
\begin{align*}
\frac{\partial x_1}{\partial t}(t) &= 2x_1(t) - 3x_3(t) \\
\frac{\partial x_2}{\partial t}(t) &= 2x_2(t) \\
\frac{\partial x_3}{\partial t}(t) &= -x_2(t) + 10x_3(t)
\end{align*}
\]
Rewrite the set of linear differential equations as a linear differential equation system. In other words, write the set of differential equations in matrix form.

(3) Solve the following steady state heat equation with non-homogeneous boundary condition.
\[
\frac{\partial^2 u}{\partial x^2} = 0 \\
u(0) = 4; \quad u(l) = 6
\]

(4) Consider the one sided finite difference approximation of \(\frac{\partial^2 u}{\partial x^2}(x_i) \) given by
\[
\frac{\partial^2 u}{\partial x^2}(x) \sim \frac{\alpha u(x) + \beta u(x + \Delta x) + \gamma u(x + 2\Delta x)}{(\Delta x)^2}.
\]
For what choice of constants \(\alpha, \beta, \) and \(\gamma \) is this scheme first order accurate?

(5) Prove that the following finite difference approximation is third order accurate.
\[
\left(\frac{\partial u}{\partial x} \right)(x) \sim \frac{2u(x + \Delta x) + 3u(x) - 6u(x - \Delta x) + u(x - 2\Delta x)}{6\Delta x}.
\]