
Effect of correlations on information – example calculation 
 
We are interested in the impact of uniform correlations of magnitude c on the Fisher 
information in a population, assuming correlated Poisson variability. 
 
Correlation matrix (N-dimensional): 
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where I is the identity matrix and ( )T1, ,1=1 … . 
 
Fisher information in terms of the covariance matrix Σ: 
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Relation between covariance matrix and correlation matrix: 
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and therefore Fisher information is 
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The vector 1 is an eigenvector of C with eigenvalue 1 ( 1)N c+ − .  



Now observe that C is symmetric. Therefore, its eigenvectors are all orthogonal and right 
and left eigenvectors are the same. Any other eigenvector than 1 must be orthogonal to 1. 
Conversely, all vectors that are orthogonal to 1 are eigenvectors: 
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All these eigenvectors have eigenvalue 1-c. The eigenvalue 1-c has eigenspace with 
dimension N-1 and this space is orthogonal to the the vector 1.  All vectors orthogonal to 
1 are eigenvectors and any orthogonal set of vectors which span the eigenspace can be 
used. 
 
If the tuning curves are symmetric, then μ is orthogonal to 1. Therefore, μ is an 

eigenvector with eigenvalue 1-c. We normalize it to obtain 0 T
=

μχ
μ μ

.  

We can diagonalize C as -1C = XΛX , with X a matrix of orthonormal eigenvectors 
andΛ the diagonal matrix of eigenvalues. Because the eigenvectors are orthonormal, 
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For c = 0.2, the minimal variance of estimates will be 20% smaller than if c=0. 
 
Note also that  
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This is the amount of information contained in a population in which individual neurons 
have the same response distributions as above, but are uncorrelated. (This is achieved by 
shuffling the trials.) 
 
Furthermore, 
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This is the amount of information that would be extracted from the correlated population 
when using a suboptimal decoder that is optimal for the shuffled (decorrelated) responses. 
 
 
 


