Effect of correlations on information - example calculation

We are interested in the impact of uniform correlations of magnitude c on the Fisher information in a population, assuming correlated Poisson variability.

Correlation matrix (N-dimensional):
$\mathbf{C}=\underbrace{\left(\begin{array}{lll}1 & c & c \\ c & 1 & c \\ c & c & 1\end{array}\right)}_{N \text { dimensions }}=(1-c) \mathbf{I}+c \mathbf{1 1}^{\mathrm{T}}$,
where \mathbf{I} is the identity matrix and $\mathbf{1}=(1, \ldots, 1)^{\mathrm{T}}$.
Fisher information in terms of the covariance matrix $\boldsymbol{\Sigma}$:
$I(s)=\mathbf{f}^{\mathrm{T}}(s) \boldsymbol{\Sigma}^{-1}(s) \mathbf{f}^{\prime}(s)$

Relation between covariance matrix and correlation matrix:
$C_{i j}=\frac{\Sigma_{i j}}{\sigma_{i} \sigma_{j}}=\frac{\Sigma_{i j}}{\sqrt{f_{i} f_{j}}}$, since we assume Poisson variability (variance $=$ mean). This can be written as

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sqrt{f_{1}} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sqrt{f_{N}}
\end{array}\right) \mathbf{C}\left(\begin{array}{ccc}
\sqrt{f_{1}} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \sqrt{f_{N}}
\end{array}\right)
$$

and therefore Fisher information is
where we denote $\boldsymbol{\mu}=\left(\frac{f_{1}{ }^{\prime}}{\sqrt{f_{1}}}, \ldots, \frac{f_{N}{ }^{\prime}}{\sqrt{f_{N}}}\right)^{\mathrm{T}}$.

The vector $\mathbf{1}$ is an eigenvector of \mathbf{C} with eigenvalue $1+(N-1) c$.

Now observe that C is symmetric. Therefore, its eigenvectors are all orthogonal and right and left eigenvectors are the same. Any other eigenvector than $\mathbf{1}$ must be orthogonal to $\mathbf{1}$. Conversely, all vectors that are orthogonal to $\mathbf{1}$ are eigenvectors:
$\mathbf{C} \boldsymbol{\chi}=(1-c) \mathbf{I} \boldsymbol{\chi}+c \mathbf{1 1}^{\mathrm{T}} \boldsymbol{\chi}=(1-c) \boldsymbol{\chi}$
All these eigenvectors have eigenvalue 1-c. The eigenvalue 1-c has eigenspace with dimension $N-1$ and this space is orthogonal to the the vector 1 . All vectors orthogonal to $\mathbf{1}$ are eigenvectors and any orthogonal set of vectors which span the eigenspace can be used.

If the tuning curves are symmetric, then $\boldsymbol{\mu}$ is orthogonal to $\mathbf{1}$. Therefore, $\boldsymbol{\mu}$ is an eigenvector with eigenvalue 1-c. We normalize it to obtain $\boldsymbol{\chi}_{0}=\frac{\boldsymbol{\mu}}{\sqrt{\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}}}$.
We can diagonalize \mathbf{C} as $\mathbf{C}=\mathbf{X} \mathbf{\Lambda} \mathbf{X}^{-1}$, with \mathbf{X} a matrix of orthonormal eigenvectors and $\boldsymbol{\Lambda}$ the diagonal matrix of eigenvalues. Because the eigenvectors are orthonormal, $\mathbf{X}^{\mathrm{T}}=\mathbf{X}^{-1}$ and $\mathbf{C}=\mathbf{X} \boldsymbol{\Lambda} \mathbf{X}^{\mathrm{T}}$, or in other words $\mathbf{C}=\sum_{i} \lambda_{i} \chi_{i} \boldsymbol{\chi}_{i}^{\mathrm{T}}$. Similarly, $\mathbf{C}^{-1}=\sum_{i} \lambda_{i}^{-1} \boldsymbol{\chi}_{i} \chi_{i}^{\mathrm{T}}$.
Information is therefore
$I=\boldsymbol{\mu}^{\mathrm{T}} \mathbf{C}^{-1} \boldsymbol{\mu}=\boldsymbol{\mu}^{\mathrm{T}} \sum_{i} \lambda_{i} \boldsymbol{\chi}_{i} \chi_{i}^{\mathrm{T}} \boldsymbol{\mu}=\frac{1}{1-c} \boldsymbol{\mu}^{\mathrm{T}} \frac{\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}}{\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}} \boldsymbol{\mu}=\frac{1}{1-c} \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}$
For $c=0.2$, the minimal variance of estimates will be 20% smaller than if $c=0$.
Note also that
$I_{\text {shuffled }}(s)=\sum_{i} \frac{\left(f_{i}^{\prime}(s)\right)^{2}}{f_{i}(s)}=\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}$
This is the amount of information contained in a population in which individual neurons have the same response distributions as above, but are uncorrelated. (This is achieved by shuffling the trials.)

Furthermore,

$$
I_{\text {diag }}(s)=\frac{\left(\mathbf{f}^{\mathrm{T}} \boldsymbol{\Sigma}_{\text {diag }}^{-1} \mathbf{f}^{\prime}\right)^{2}}{\mathbf{f}^{\mathrm{T}} \boldsymbol{\Sigma}_{\text {diag }}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\text {diag }}^{-1} \mathbf{f}^{\prime}}=\frac{\left(\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}\right)^{2}}{\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\Sigma}_{\text {diag }}^{-1 / 2} \boldsymbol{\Sigma} \boldsymbol{\Sigma}_{\text {diag }}^{-1 / 2} \boldsymbol{\mu}}=\frac{\left(\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}\right)^{2}}{\boldsymbol{\mu}^{\mathrm{T}} \mathbf{C} \boldsymbol{\mu}}=\frac{\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\mu}}{1-c}=I(s)
$$

This is the amount of information that would be extracted from the correlated population when using a suboptimal decoder that is optimal for the shuffled (decorrelated) responses.

