Homework set 2

(Lectures 3 and 4)



3.1 Recognizing a person

To recognize a person, we do not care about viewing angle and
lighting conditions. Write down a generative model for this task

and use it to explain how a Bayesian observer would infer a
person’s identity.
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3.2 Internal representation vs.
population activity

We have considered two different views of a perceptual observation:
one is the “internal representation” of a stimulus. For example, if the
true orientation of a line is 90°, then the internal representation might
be 87°. The other view is the neural activity elicited by the stimulus,
e.g. a population code in V1 representing the 90° line. How are these
two views related? Is the population code more informative or not

than the “internal representation”? Why?
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3.3 Same or different speeds?

Two objects are moving at unknown speeds. Denote speed by v
and the noisy observations of the objects’ speeds by x and y.
Suppose the generative model, i.e. p(x|v) and p(y|v), as well as
the prior distribution over speed, p(v), are known. Using this
knowledge, how does a Bayesian observer infer, based on x and
y, whether the objects are moving at the same speed?



Bayesian model comparison (by the brain)
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“But when the speeds are equal, the observations
are still drawn from independent processes, that
just happen to take the same value?”
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3.4 Visual illusions

Find two visual illusions (other than the Ponzo and the
horse/frog illusion, which were discussed in class). For each,
draw a generative model to indicate the statistical dependencies
between the variables. For each, use the generative model to
write down a formal Bayesian model to explain the illusion. (The
two illusions must have different generative models.)



Tabletop illusion
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e Prior that parallellograms are rectangles lying flat
e Depth cue from angle




Poggendorf illusion
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Hollow face illusion

YouTube video

Convexity prior
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3.5 Aperture problem

A bar moving behind a circular aperture is generally perceived as
moving in a direction perpendicular to its own orientation, even
though its motion is consistent with a wide range of directions.

Explain this in a Bayesian framework using a prior preference for
low speeds.
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4.1 Response (estimate) distribution

What is the general equation for the response distribution
(assuming some deterministic decoder) in terms of the posterior

distribution?
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4.2 Posterior vs response distribution

Work out a case where the posterior distribution and the
response distribution are both continuous but very different
from each other. (For example, choose non-Gaussian
distributions and/or a more complex generative model.)
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4.3 More posterior vs response distribution

Do the same when the stimulus variable is discrete, for example
binary.

e Same as continuous, with discrete prior
1 1
p(s):55(5—31)+§5(s—52)

e Binary stimulus, binary observations

p(x; [s=1)p(y,|s=1)
X;1s=0)p(y,Is=0)+p(x;[s=1)p(y,|s=1)

p(s=11%;. ¥ )= o



4.5 Simple inference with prior

Even when a single stimulus has to be inferred from a single cue,
a bias can arise due to a prior. Assuming a Gaussian noise model
and a Gaussian prior (with specified mean and variance),
compute the bias as a function of the stimulus.
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