Theoretical systems neuroscience

Wei Ji Ma
Baylor College of Medicine

- Big goal: understand relation between neural activity and behavior in quantitative terms
- Representation and computation
- Focus on perception

Class schedule

Tue March 17	Population encoding and decoding
Thu March 19	Correlated activity in neural populations
Tue March 24	Theories of perception
Thu March 26	Cue combination
Tue March 31	Bayesian models of perceptual tasks
Thu April $\mathbf{2}$	No class
Tue April 7	Neural basis of Bayesian inference
Thu April 9	Decision-making
Tue April 14	Learning
Thu April 16	Probabilistic models of cognition

Procedures

- Exercises
- Some will be done in class, rest is homework
- Will help a lot in understanding
- Those marked "bonus" are optional
- Due each Saturday - email to wjma@bcm.edu
- Solutions will be discussed each Tuesday
- Questions? Email or call at 7137988407
- Readings: for every Thursday lecture
- Comments very welcome!

Lecture 1:
 Population encoding and decoding

Why do we have a brain?

\longrightarrow Essential function: using sensory information to guide motor actions

- Stimulus: physical feature of the world (often 1D)
- Orientation of a contour
- Direction of self-motion
- Number of students in class
- Whether object A is bigger than object B
-
- Neural representation: spike activity of neurons in response to stimulus (population code)
- Stimulus judgment: often motor response
- Not in this framework: computation

Tuning curve of a single neuron

Macaque V1
Shapley et al., 2003

Tuning curve of a single neuron

Macaque S2
Pruett et al., 2000

Tuning curve of a single neuron

Mean response as a function of the stimulus

Variability around the mean response

$$
\text { Response distribution: } \quad p(r \mid s)
$$

Variability is Poisson-like: spike count variance proportional to mean

Trial 1: 7 spikes
Trial 2: 5 spikes
Trial 3: 3 spikes
Trial 4: 6 spikes

Poisson variability

- Discrete distribution (spike counts)

$$
p(r \mid s)=\frac{e^{-f(s)} f(s)^{r}}{r!}
$$

- Variance $=$ mean $=f(s)$.
- r is an integer, $f(s)$ not necessarily
- Fano factor = Variance/mean = 1
(Physiology: near Poisson, but Fano not 1)

Gaussian Variability

- Continuous distribution

$$
p(r \mid s)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(r-f(s))^{2}}{2 \sigma^{2}}}
$$

- Problem at small means
- Variance is not fixed \rightarrow

$$
p(r \mid s)=\frac{1}{\sqrt{2 \pi \sigma(s)^{2}}} e^{-\frac{(r-f(s))^{2}}{2 \sigma(s)^{2}}}
$$

- Very similar to Poisson for large means

Single neuron - response variability

Population of neurons

Population activity on a single trial

Population activity - variability

Preferred stimulus

Response distribution
(noise distribution): $p(\mathbf{r} \mid s)$

Independent Poisson variability

One neuron: $\quad p(r \mid s)=\frac{e^{-f(s)} f(s)^{r}}{r!}$

Population:

$$
p(\mathbf{r} \mid s)=\prod_{i=1}^{N} \frac{e^{-f_{i}(s)} f_{i}(s)^{r_{i}}}{r_{i}!}
$$

Population codes in the brain

- Primary visual cortex (orientation, spatial frequency)
- MT (motion direction, velocity)
- IT (human faces, objects)
- SC (saccade direction)
- Primary motor cortex (arm movement direction)
- Hippocampus in rat (self location)
- Cercal interneurons in cricket (wind direction)
- Prefrontal cortex (numerosity)

Why population coding and not single-neuron coding? ...

Decoding population activity

Winner-take-all decoder

Center-of-mass decoder

Template-matching decoder

Exercise

Show that in good approximation, minimizing the sum squared distance between the template and the population pattern is equivalent to

$$
\begin{aligned}
& \hat{s}=\underset{s}{\operatorname{argmax}} \mathbf{r} \cdot \mathbf{f}(s) . \\
& \hat{s}=\underset{s}{\operatorname{argmin}} \sum_{i=1}^{N}\left(r_{i}-f_{i}(s)\right)^{2}
\end{aligned}
$$

Maximum-likelihood decoder

- Does not only use \mathbf{r} and $\mathrm{f}(\mathrm{s})$, but also noise distribution $p(\mathrm{r} \mid s)$ (e.g. independent Poisson)
- Find the value of s that maximizes the likelihood of s, i.e. $p(r \mid s)$

$$
\hat{s}=\operatorname{argmax} p(\mathbf{r} \mid s)
$$

- Experimental disadvantage: need to know (or assume) $p(\mathbf{r} \mid s)$

Exercise

$$
\hat{s}=\operatorname{argmax} p(\mathbf{r} \mid s)
$$

S
If neuronal noise is independent and normally distributed with fixed variance, the maximumlikelihood decoder is equivalent to a decoder we already know. Which one?

Bayesian decoding

- Bayes' rule:

Bayesian decoders

- Bayes' rule:

$$
p(s \mid \mathbf{r}) \propto p(\mathbf{r} \mid s) p(s)
$$

- Decoders based on the posterior:
- Maximum-a-posteriori decoder

$$
\hat{s}=\operatorname{argmax} p(s \mid \mathbf{r})
$$

- Decoders minimizing expected cost

Stimulus

$$
\hat{s}=\underset{s}{\operatorname{argmin}} \underbrace{\int p\left(s^{\prime} \mid \mathbf{r}\right) C\left(s, s^{\prime}\right) d s^{\prime}}_{\text {expected value }} \underbrace{}_{\text {cost function }}
$$

Cost functions

- Sum squared error:

$$
C(\hat{s}, s)=(\hat{s}-s)^{2}
$$

- Leads to mean of posterior (can be different from mode):

$$
\hat{s}=\int s p(s \mid \mathbf{r}) d s
$$

- Exercise: show this.
- Other cost function: absolute error (exercise).

Sampling decoder

Draw a random number from the posterior distribution \rightarrow stochastic (non-deterministic) decoder

How to judge a decoder?

Good decoders

- Unbiased

- Low variance
- Can be implemented by a neural network.

Cramer-Rao bound

- Variance of decoder cannot be lower than a fixed number.
- This number depends on the noise distribution.

$$
\begin{array}{ll}
\sigma_{\text {any decoder }}^{2} \geq \frac{1}{I(s)} & \text { Cramer-Rao bound } \\
I(s)=-\left\langle\frac{\partial^{2}}{\partial s^{2}} \log p(\mathbf{r} \mid s)\right\rangle & \text { Fisher information }
\end{array}
$$

Fisher information

Independent Poisson variability:

$$
I(s)=\sum_{i=1}^{N} \frac{f_{i}^{\prime}(s)^{2}}{f_{i}(s)}
$$

- Mean activity
_- Fisher information per neuron
Contribution of neuron i :

$$
I_{i}(s)=\frac{f_{i}^{\prime}(s)^{2}}{f_{i}(s)}
$$

$I(s)$ independent of s

Fisher information per neuron

Activity

Activity

Fisher information and discriminability

Efficient Decoding

- An efficient decoder is one that achieves the CramerRao lower bound.

$$
\sigma_{\text {efficient decoder }}^{2}=\frac{1}{I(s)}
$$

- Fisher information is a decoder-independent measure of the "quality" of a population code.
- The ML decoder is asymptotically unbiased and efficient \rightarrow "best possible decoder".

Decoding probability distributions

Activity

Allows for probabilistic inference

Alternative probabilistic codes

$$
f_{i}(s)=A \cdot \operatorname{Pr}\left(s=s_{i}\right)
$$

Binary stimuli

- Was the motion to the left or to the right?
- Is A bigger than B?
- Were A and B the same or different?
- Was the target present or absent?

$$
\begin{array}{ll}
& p(s=0 \mid \mathbf{r})=\frac{p(\mathbf{r} \mid s=0) p(s=0)}{p(\mathbf{r})} \\
p(s=1 \mid \mathbf{r})=\frac{p(\mathbf{r} \mid s=1) p(s=1)}{p(\mathbf{r})}
\end{array}
$$

Binary stimuli - Log odds

$$
L=\log \frac{p(s=1 \mid \mathbf{r})}{p(s=0 \mid \mathbf{r})}=\log \frac{p(\mathbf{r} \mid s=1)}{p(\mathbf{r} \mid s=0)}+\log \frac{p(s=1)}{p(s=0)}
$$

Measure of certainty / confidence in binary decisions

Thursday

- Noise correlations in encoding and decoding
- Generalized linear models
- Reading:

1. Averbeck, Latham, Pouget (2006)

Neural correlations, population coding, and computation. Nat Rev Neurosci 7(5): 358-66.
2. Ginzburg and Sompolinsky (1994)

Theory of correlations in stochastic neural networks.
Physical Review E 50(4): 3171-91.
3. Pillow et al. (2008)

Spatio-temporal correlations and visual signalling in a complete neural population. Nature 454 (7207): 995-9.

