Correlated activity in populations



Last lecture

1. Population response (noise) distributions

. Population decoders (winner-take-all, center-of-mass,
template-matching, maximume-likelihood, Bayesian)

. Goodness of decoders = Fisher information

4. Decoding uncertainty (probability

distributions over the stimulus)



Today

. Quantifying the effect of correlations on
information

. Modeling correlated population activity

Averbeck, Latham, Pouget (2006), Neural
correlations, population coding, and
computation. Nat Rev Neurosci 7(5): 358-66.

Pillow et al. (2008), Spatio-temporal correlations

and visual signalling in a complete neural
population. Nature 454 (7207): 995-9.
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Quality of a population code

* How much information about a stimulus s does a
population r contain? =2
e How well does the best possible decoder do in decoding

sfromr? =2
 Fisher information

—210g P (r | S) the population
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Population response distribution

e Conditional independence
p(r|s) Hp (r.|s)
e Noise correlations

p(r|s)¢fl[p(n|s)

e Different from signal correlations



Signal correlations

Tuning curves of two neurons
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Change stimulus, ignore variability
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Noise correlations

Fix stimulus, examine variability across trials
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Stimulus



Noise correlations
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Noise correlations
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Noise versus signal correlations

e Noise correlations

N

p(ris)=]]p(rls)

=1

e Signal correlations



How do noise correlations affect
information?

e Can go either way!

 General conclusions about redundancy or
synergy not justified

 How to quantify the impact of correlations on
information? What is your “control”?



Shuffling responses

Spike counts (in response

to a fixed stimulus)

Spike counts with trials
shuffled (separately)

Neuron 1 Neuron 2

Trial# | Neuron1l Neuron2
1 8 12
2 7 13
3 4 6
4 5 6
5 1 0
6 6 8

Positively correlated
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AIshufﬂed
Shuffling preserves variability of each neuron
individually, p(r;|s)
Destroys correlations

Measure of information in correlations:

Al

shuffled — | — Ishufﬂed

Information relates to discriminability
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Interaction between sighal and noise
correlations

e |f signal correlations are positive, positive
noise correlations decrease information.

e |f signal correlations are negative, positive
noise correlations increase information.

e Correlations can depend on the stimulus.



In cortex

* Al umeq < 10% (pairs of neurons)
— Rat barrel cortex
— Macaque V1, prefrontal, somatosensory cortex

e But: small effects of pair correlations can have
large effects in populations



Encoding versus decoding perspective

e So far: how do correlations affect the total
amount of information in a population?
(Encoding perspective: redundancy / synergy)

 Decoding: given a correlated population, how
much worse would you do when ignoring the
correlations?



Al diag

e Train a decoder on the shuffled (uncorrelated
data)

 Apply the same decoder to the true,

correlated data > extract information | diag
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lgnoring correlations

l4iag CANNOL be greater than / (unlike /g, ¢eq)
Estimating correlations is data-intensive

Trade-off between decoding performance and
data needed to measure correlations

Alyi,e = 10% in experiments (pairs of neurons):
— Mouse retina

— Rat barrel cortex
— Macaque SMA, V1, and motor cortex



Modeling correlated populations

e Complete populations are different from pairs
of neurons.

e So far, no model-based characterization of
correlations



Pillow et al. (2008)

Complete population

Encoding model for spike times = allows
examining temporal correlations

Parameters can be fit to physiological data

Stimuli: binary white noise

— Not a single number, but a time series for every
pixel i: X;



Recordings

 Neural data: 27 retinal ganglion cells in vitro
— ON and OFF cells
— Nearly complete mosaics

ON mosaic OFF mosaic



Poisson neurons
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LNP-neurons
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Fitting the parameters of the model to
the data

y: 000000110000010010000000000110001000

Likelihood: P (data | model) = H P ( y, | model parameters)
t

Log likelihood: log p(data | model) Zlog p(yt | model parameters)

= Z logp =1 K, 6’) Z logp( O|K‘9)

spiking t non-spiking t
= Y log(f,(Kx(t))ot)+ Y log(1-f,(Kx(t))st)
spiking t non-spiking t

Paninski, 2003



Coupled spiking model
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Other tests

Triplet correlations

Peri-stimulus time histograms (average single-
cell responses to new stimuli)

Predicting a single cell’s spike train from the
stimulus and the activity of the rest of the
population

So far: encoding perspective. What about
decoding perspective?



Bayesian decoding

* Bayes’ rule:
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Bayesian decoding

single pixel

18 samples ‘ m ‘ P(3|r) m | m |
218 stimuli

Bayesian
decoding
il i ] i
| 1 |l L 11 ||
i | i il I 1 1
11 1 111 111 in 1
1| LI i 1 III 11 i
II’ ! II“IIII ! | ’I III II“II ' L]
| i1l 1 1 ] mni 1 I




log SNR (bits per s)

N
o

NS w
o o

—
o

Decoder performance

Linear decoding
Poisson model
Uncoupled model
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o —

™

Bayesian decoding

Bayesian decoder under
coupled model extracts
about 20% more
information than under
the uncoupled model.

Pairwise = just 10%, as in
previous studies



Summary

Signal versus noise correlations

Shuffling trials is a way to study the effect of correlations on
information.

Correlations can increase or decrease information.

If signal and noise correlations have the same sign, they tend to
decrease information.

Encoding versus decoding perspective
lgnoring pairwise correlations reduces information by ~10%.

Effect of pairwise correlations on entire population is not clear.
Pillow et al. 2 20% more information when exploiting full
correlations

LNP and coupled spiking models are convenient phenomenological
models for correlated populations.



Exercises

e Allin notes of lecture 1 (on class website)
e Due Saturday March 21 (end of day)

e “Bonus” exercises are optional.
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