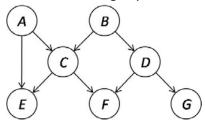
Exercises lecture 5

1. From the following Bayesian network, compute p(A|E,F) in terms of known conditional probabilities:



2. a) Prove the Laplace approximation:

$$p(D|M) \approx p(D|M, \hat{\theta}_{MAP}) p(\hat{\theta}_{MAP}|M) \frac{1}{\sqrt{\det \frac{\mathbf{H}}{2\pi}}}$$

with
$$\mathbf{H} = -\nabla\nabla\log p\left(\theta\,|\,D,M\,
ight)\Big|_{\theta=\hat{\theta}_{\mathrm{MAP}}}$$
 .

b) What is **H** when the posterior over θ is a multivariate Gaussian with mean $\hat{\theta}_{MAP}$ and covariance matrix Σ ?

3. The following exercise from MacKay, Information theory, inference, and learning algorithms

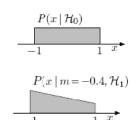
Exercise 28.1.^[3] Random variables x come independently from a probability distribution P(x). According to model \mathcal{H}_0 , P(x) is a uniform distribution

$$P(x \mid \mathcal{H}_0) - \frac{1}{2}$$
 $x \in (-1, 1).$ (28.20)

According to model \mathcal{H}_1 , P(x) is a nonuniform distribution with an unknown parameter $m \in (-1,1)$:

$$P(x | m, \mathcal{H}_1) = \frac{1}{2}(1 + mx)$$
 $x \in (-1, 1).$ (28.21)

Given the data $D = \{0.3, 0.5, 0.7, 0.8, 0.9\}$, what is the evidence for \mathcal{H}_0 and \mathcal{H}_1 ?



4. The following exercise from the same book:

Exercise 28.2.^[3] Datapoints (x,t) are believed to come from a straight line. The experimenter chooses x, and t is Gaussian-distributed about

$$y = w_0 + w_1 x (28.22)$$

with variance σ_{ν}^2 . According to model \mathcal{H}_1 , the straight line is horizontal, so $w_1=0$. According to model \mathcal{H}_2 , w_1 is a parameter with prior distribution Normal(0,1). Both models assign a prior distribution Normal(0,1) to w_0 . Given the data set $D=\{(-8,8),(-2,10),(6,11)\}$, and assuming the noise level is $\sigma_{\nu}=1$, what is the evidence for each model?

