Gestalt psychology, Bayesian
networks, and Bayesian model
comparison



Done so far

Population encoding and decoding
Role of correlations in populations

Perception as Bayesian inference; explaining
visual illusions

Cue combination: a simple Bayesian
computation



This lecture

* Gestalt psychology: cornerstone of higher-
level vision in psychology: beyond sensory
uncertainty

e Bayesian models in practice: how to compute
probabilities when it gets hard; how to
generate behavioral predictions

e Bayesian model comparison: how to show
that model A is better than model B; Occam’s
razor



Gestalt psychology

 Observers tend to order their experience in a
manner that is regular, orderly, symmetric,
and simple.

e “The whole is different than the some of its
parts.”

e Gestalt psychologists attempt to discover
refinements of this idea 2 Gestalt “laws of
grouping”



Law of closure

The mind tends to complete incomplete figures (that is, to
increase regularity). We may experience elements that are
not physically present.



Law of proximity

Spatial or temporal proximity of elements may induce
the mind to perceive a collective entity.



Law of similarity
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The mind groups similar elements into collective entities.
This similarity might depend on relationships of form,
color, size, or brightness.



Law of continuity

The mind continues visual, auditory, and kinetic patterns.
When something is introduced as a series, the mind tends to
perpetuate the series.



Law of common fate

When element move in the same direction, we tend to
see them as a collective entity.



Criticisms

“Vague and inadequate” — V. Bruce et al., 1996
“Redundant and uninformative” — wikipedia
”Haphaza rd” — Trevor Holland, March 29, 2009
Descriptive rather than explanatory



Gestalt as Bayesian inference

p(single object | x,,x,.,..., X, )

p(independent objects | x,, X, ..., X, )

No sensory uncertainty, but uncertainty about higher-level structure



How to compute Bayesian
probabilities when it gets hard



Bayesian networks

Exercise: Compute p(A|E,F) based on the conditional
probabilities indicated in this Bayesian network.



How to compute probabilities in
practice



Markov chain
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(&) p(4,B,C)=p(4)p(B|4)p(C|B)
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Conditional independence

p(A,B,C)zp(A)p(B|A)p(C|A)

p(4.8,C) _ p(4 ) (BIA) (C14)

p(41B,C)= p(B.C) Zp p(B|4)p(C|A)

2.p(4.5 )_ p(4 ) <B|A>
Zp ) D> p(4)p(B|4)

A

p(4]B)=




Independent sources

(4 (8
p(4,B,C)=p(A4)p(B)p(C|4,B)
()




How to predict behavioral data?



Example: change localization

Where was
the change?

1000 ms

100 ms



Step 1: What are the parameters?

Number of items N (assumed known)
Where did the change occur? L =1,...,N
How big was the change? A

What were the original features? 6,,..., 6,
What were the new features? ¢,..., ¢,

Internal representations of original features:

X1yeeer Xy

Internal representations of new features: y;,...



Step 2: Draw generative model, write down
prior and conditional probabilities

e P(L):ﬁ

p(6,)= p(A)=constant

0 @ e p(9]0,L,A)=5(p—-0-A1,)




Step 3: Compute the posterior over the
task variable using probability calculus

e p(L,x,y,0,0)=p(L)p(0)p(A)p(@0,L,A)p(x[0)p(ylo)

p(LIxy)< p(Lxy)=[[[p(L.xy.0,0)dAd0de

O @ e =[[]p(L)p(8)p(A)p(016,L,A) p(x]8) p(y|®)dAdOde
e Q OCI(IP(X\G)(Ip(tp\G,L,A)p(y\(p)d<p)d9)dA

_[(IP(X|9)(I5((P—9—A1L)p(yI(p)d(p)dﬂ)dA

=[([p(x10) p(yl@=0-+A1,)d0)dA




Step 4: Pick a decoder (e.g. MAP)

(XL —VL )2

2 2
Z(GX,L +0y,L)

L(x,y) = argmax \/aiL + aiLe
L

Step 5: Monte Carlo simulation

Draw many sets of x, y (trials) from generative model but
with priors given by experiment, in each experimental
condition separately.

Compute i(x,y) on each trial.

—> Histograms p(i | experimental condition)



How to compare models to data?

What makes model A better than model B?

If it describes the data better...

What do we mean by “describing better”?
Lower error, higher goodness-of-fit...

N 2 2\

What is the right error or goodness-of-fit
measure to use?

N2

Look up in statistics book / pull out of hat (t-
test, R?, x?%, SSE, ...)



Maximum-likelihood fitting

e Data D
e Model M

p(M|D)ox p(D|M)p(M)

Model likelihood Flat model prior

* Find model with highest likelihood
argmax p(D|M)



Maximum-likelihood fitting

e Model parameters 0
* Find parameters that work best for given

model
0, = argmax p(D|M,0)
0

p(DIM)=p(D|M.6,)

* Repeat for all candidate models



Example: linear regression

e Data: D = (X,Y)

e Model M:
y = ax + b + Gaussian noise with fixed variance

p(D\M,H)

p(X.,Y|a,b,0)
p(Y|X,a,b,0)p(X)

(Y, —aX,~b)’

(&,IS) =argmin ) (¥, —aX, ~b)’
abh



Example: probability distributions

e Data: histogram (ny,n,,..,n;)

* Model M: n; drawn from multinomial with
probabilities p.(0)

p(D|M,6)=p(n|p(6))

_ (nl_|_...+nB)!pl(6))n1 D, (e)ng

nl--n,!

logp D|M, 6’ Zn logp +Constant



Is a better fit always better?
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y=1.49 x* - 0.65 x + 30.3
R?2=0.78
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y= [y1 Vo V3 .. y21]
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Why is this not a good model?



Occam’s razor (parsimony)

e “Simpler models are better”
e Simpler: fewer assumptions, fewer parameters
e But not a rigorous formulation

 Can only decide between two models that fit
the data equally well

 Balance between complexity and power

— Bayesian model comparison



Bayesian model comparison

p(¢9|D,M)ocp(D|M,¢9)p(67|M)

p(DIM)=|p(D|M,60)p(0|M)d6

goodness of fit averaged over all possible
parameter combinations



How does this help?

Assume p(0|M) is flat

1

0| M)=
p( l ) Volume of parameter space

p(0|D,M)oc p(D|M,6)

1
Volume of parameter space

p(D|M)= [p(D|M,0)d0

Many parameters = large volume



Likelihood landscape

"

Probability

par

p(D|M,0) is high if the data are fit well compared to other possible data



Probability

_p(01D.M) e p(D|M.0)

Normalized

Error bars on parameters



Unnormalized but averaged

Probability

p(D|M)=[p(D|M.0)p(0|M)do



Bayesian model comparison

p(DIM)=|p(D|M,60)p(0| M)d6

Penalizes poorly fitting models (p(D|M,8) low overall)

Penalizes non-specific models (peak of p(D|M,0) is low,
since it is normalized over D)

Penalizes models that have to be finely tuned (width of
p(D|M,B) is low)

Penalizes models with many parameters (low p(8 | M))

Penalizes models with poor choice of prior range of
parameters (p(6| M) doesn’t overlap with p(D|M,8))



How to compute the integral?

p(DIM)=|p(D|M,60)p(0|M)d6

e Sum over all possible parameter
combinations?

e Say 4 parameters, each parameter takes 50
values, each model simulation takes 10 ms =2
17 hours

e Approximation would be useful!



Approximating it..

« Peakof p(D|M.0)isp(D 100} 4
* Width of p(D|M,0)is 6,
* Width of p(@]M)is o

Then
p(D|M)=[p(D|M,0)p(6|M)do

=p D|M?éMAP p(éMAP |M)O-90

~p D‘MﬂéMAP
Compare
p(D|M)=p(D|M.0, |

Occam factor



Laplace approximation

p(DIM) = p(D|M.0p) p( B | M) :

Hessian of the -log posterior:
H=-VVlog p(6|D,M)

0=0yyup

Exercises:

e Prove this.

 What is H when the posterior is a multivariate Gaussian
centered at Gy .p ?




Goodness of a model

p(M|D)x p(D|M)p(M)
p(D|M)=[p(D|M,0)p(0| M)do

Relative goodness of two models:

| p(D|M,,6)p(0]M,)do

p(DIM)p(M,) _, (M)
jp(D|M 0)p(6|M,)do

p(D|M2)p(M2) ) ng(Mz)

log +log



Exercises

Exercise 28.1.1%] Random variables o come independently from a probability
distribution P(z). According to model Hy, P(z) is a uniform distribu-

- P(z|Ho)
tion 1 (x| Ho)
Plx|Hp) = 5 x e (—1,1). (28.20) 1 =
According to model ‘Hy, P{x) is a nonuniform distribution with an un-
known parameter m £ (—1,1): J_D('»F |m=—0.4,H,)
P(z|m Hy) = (1 +mz) =z (-11). (28.21) - ‘1 —
Given the data D = {0.3,0.5,0.7,0.8,09}, what is the evidence for Hg
and H,7
Exercise 28.2.[‘?- Datapoints (. 1) are believed to come from a straight line.
The experimenter chooses x, and t is Gaussian-distributed about y = wp +wix
Y = wo + wiz (28.22) P
with variance JE. According to model ‘Hy, the straight line is horizontal, T

so wy = 0. According to model Hg, wy is a parameter with prior distribu-
tion Normal(0,1). Both models assign a prior distribution Normal(0,1)
to wy. Given the data set D = {(—8,8),(—2,10),(6,11)}, and assuming
the noise level 1s o, = 1, what is the evidence for each model?

David MacKay, Information theory, inference, and learning algorithms (2003)



Bayesian model comparison and
Gestalt laws

“Law of continuity”



Bayesian model comparison

Model 1 Model 2
2 lines 2 angles
Each line 2 free parameters Each angle 4 free parameters
- 4 free parameters - 8 free parameters
Assume each takes 50 values Assume each takes 50 values

Uniform priors Uniform priors



Bayesian model comparison

Model 1 Model 2
1Y LY
(DI~ [ p(D11.0) (o1 )01 P01} 55
M | D DM M
p(M,]| ):P( M) p( 1):504z6250000

p(M,|D) p(D|M,)p(M,)



Open questions

e Can the Gestalt laws be written as outcomes
of Bayesian model comparison?

e Can such Bayesian models be tested by
changing parameters and measuring human
behavior?

* How is hierarchical inference implemented in
neural networks?



Small project

Auditory-visual speech perception data

dentify a syllable as /ba/ or /da/
~actorial design

n each condition, % responses

u/ba/n and u/da/n Visual 3

Massaro et al., 1993

BA

14

DA

none

Auditory

BA 2 3

4 DA none

http://mambo.ucsc.edu/psl/data/mass93a.html



Approach

1. Model structure
a) Inference model vs modeler’s model
b) What are the free parameters?

c) First pass: fix feature values of intermediates
(equidistant, equal between modalities)

V2A2 V3A3 A4V4

I |l | | I I
/ba /da




2. Predict responses using Bayesian model

a)
b)
C)
d)

Assume conditional independence
Collapse onto two categories
Assume variances independent of s
Make other assumptions if necessary

auditory-visual

auditory




3. Is the Bayesian model better than the
established model?

a) Work out alternative model (FLMP; multiplies
response frequencies)

b) Maximum-likelihood fitting

c) Bayesian comparison (integrate over free
parameters; approximate where necessary)

4. Discuss results and caveats

Due by Saturday, April 11




