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2 ·Hermitian Matrices

Having navigated the complexity of nondiagonalizable matrices, we return
for a closer examination of Hermitian matrices, a class whose mathematical
elegance parallels its undeniable importance in a vast array of applications.

Recall that a square matrix A ∈ n×n is Hermitian if A = A
∗. (Real

symmetric matrices, A ∈ n×n with A
T = A, form an important subclass.)

Section 1.5 described basic spectral properties that will prove of central
importance here, so we briefly summarize.

• All eigenvalues λ1, . . . , λn of A are real ; here, they shall always be
labeled such that

λ1 ≤ λ2 ≤ · · · ≤ λn. (2.1)

• With the eigenvalues λ1, . . . , λn are associated orthonormal eigenvec-
tors u1, . . . ,un. Thus all Hermitian matrices are diagonalizable.

• The matrix A can be written in the form

A = UΛU
∗ =

n�

j=1

λjuju
∗
j ,

where

U = [u1 · · · un ] ∈ n×n, Λ =




λ1

. . .
λn



 ∈ n×n.

The matrix U is unitary, U
∗
U = I, and each uju

∗ ∈ n×n is an
orthogonal projector.
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44 Chapter 2. Hermitian Matrices

Much of this chapter concerns the behavior of a particular scalar-valued
function of A and its generalizations.

Rayleigh quotient

The Rayleigh quotient of the matrix A ∈ n×n at the nonzero vector
v ∈ n is the scalar

v
∗
Av

v∗v
∈ . (2.2)

Rayleigh quotients are named after the English gentleman-scientist Lord
Rayleigh (a.k.a. John William Strutt, ����–����, winner of the ����
Nobel Prize in Physics), who made fundamental contributions to spectral
theory as applied to problems in vibration [Ray78]. (The quantity v

∗
Av is

also called a quadratic form, because it is a combination of terms all having
degree two in the entries of v, i.e., terms such as v2

j and vjvk.)
If (λ,u) is an eigenpair for A, then notice that

u
∗
Au

u∗u
=

u
∗(λu)
u∗u

= λ,

so Rayleigh quotients generalize eigenvalues. For Hermitian A, these quan-
tities demonstrate a rich pattern of behavior that will occupy our attention
throughout much of this chapter. (Most of these properties disappear when
A is non-Hermitian; indeed, the study of Rayleigh quotients for such matri-
ces remains and active and important area of research; see e.g., Section 5.4.)

For Hermitian A ∈ n×n, the Rayleigh quotient for a given v ∈ n

can be quickly analyzed when v is expressed in an orthonormal basis of
eigenvectors. Writing

v =
n�

j=1

cjuj = Uc,

then
v
∗
Av

v∗v
=

c
∗
U
∗
AUc

c∗U∗Uc
=

c
∗
Λc

c∗c
,

where the last step employs diagonalization A = UΛU
∗. The diagonal

structure of Λ allows for an illuminating refinement,

v
∗
Av

v∗v
=

λ1|c1|2 + · · · + λn|cn|2

|c1|2 + · · · + |cn|2
. (2.3)

As the numerator and denominator are both real, notice that the Rayleigh
quotients for a Hermitian matrix is always real. We can say more: since the
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eigenvalues are ordered, λ1 ≤ · · · ≤ λn,

λ1|c1|2 + · · · + λn|cn|2

|c1|2 + · · · + |cn|2
≥ λ1(|c1|2 + · · · + |cn|2)

|c1|2 + · · · + |cn|2
= λ1,

and similarly,

λ1|c1|2 + · · · + λn|cn|2

|c1|2 + · · · + |cn|2
≤ λn(|c1|2 + · · · + |cn|2)

|c1|2 + · · · + |cn|2
= λn.

Theorem 2.1. For a Hermitian matrix A ∈ n×n
with eigenvalues

λ1, . . . , λn, the Rayleigh quotient for nonzero v ∈ n×n
satisfies

v
∗
Av

v∗v
∈ [λ1, λn].

Further insights follow from the simple equation (2.3). Since

u
∗
1Au1

u
∗
1u1

= λ1,
u
∗
nAun

u∗nun
= λn.

Combined with Theorem 2.1, these calculations characterize the extreme
eigenvalues of A as solutions to optimization problems:

λ1 = min
v∈ n

v
∗
Av

v∗v
, λn = max

v∈ n

v
∗
Av

v∗v
.

Can interior eigenvalues also be characterized via optimization problems? If
v is orthogonal to u1, then c1 = 0, and one can write

v = c2u2 + · · · + cnun.

In this case (2.3) becomes

v
∗
Av

v∗v
=

λ2|c2|2 + · · · + λn|cn|2

|c1|2 + · · · + |cn|2
≥ λ2,

with equality when v = u2. This implies that λ2 also solves a minimization
problem, one posed over a restricted subspace:

λ2 = min
v∈ n

v⊥u1

v
∗
Av

v∗v
.
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46 Chapter 2. Hermitian Matrices

Similarly,

λn−1 = max
v∈ n

v⊥un

v
∗
Av

v∗v

All eigenvalues can be characterized in this manner.

Theorem 2.2. For a Hermitian matrix A ∈ n×n
,

λk = min
v⊥span{u1,...,uk−1}

v
∗
Av

v∗v
= min

v∈span{uk,...,un}

v
∗
Av

v∗v

= max
v⊥span{uk+1,...,un}

v
∗
Av

v∗v
= max

v∈span{u1,...,uk}

v
∗
Av

v∗v
.

This result is quite appealing, except for one aspect: to characterize
the kth eigenvalue, one must know all the preceding eigenvectors (for the
minimization) or all the following eigenvectors (for the maximization). Sec-
tion 2.2 will describe a more flexible approach, one that hinges on the eigen-
value approximation result we shall next describe.

2.1 Cauchy Interlacing Theorem

We have already made the elementary observation that when v is an eigen-
vector of A ∈ n×n corresponding to the eigenvalue λ, then

v
∗
Av

v∗v
= λ.

How well does this Rayleigh quotient approximate λ when v is only an
approximation of the corresponding eigenvector? This question, investigated
in detail in Problem 1, motivates a refinement. What if one has a series of
orthonormal vectors q1, . . . ,qm, whose collective span approximates some
m-dimensional eigenspace of A (possibly associated with several different
eigenvalues), even though the individual vectors qk might not approximate
any individual eigenvector?

This set-up suggests a matrix-version of the Rayleigh quotient. Build
the matrix

Qm = [q1 · · · qm ] ∈ n×m,

which is subunitary due to the orthonormality of the columns, Q
∗
mQm = I.

How well do the m eigenvalues of the compression of A to span{q1, . . . ,qm},

Q
∗
mAQm,
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2.1. Cauchy Interlacing Theorem 47

approximate (some of) the n eigenvalues of A? A basic answer to this ques-
tion comes from a famous theorem attributed to Augustin-Louis Cauchy
(����–����), though he was apparently studying the relationship of the roots
of several polynomials; see Note III toward the end of his Cours d’analyse

(����) [Cau21, BS09].
First build out the matrix Qm into a full unitary matrix,

Q = [Qm
�Qm ] ∈ n×n,

then form

Q
∗
AQ =

�
Q
∗
mAQm Q

∗
mA�Qm

�Q∗
mAQm

�Q∗
mA�Qm

�
.

This matrix has the same eigenvalues as A, since if Au = λu, then

Q
∗
AQ(Q∗

u) = λ(Q∗
u).

Thus the question of how well the eigenvalues of Q
∗
mAQm ∈ m×m ap-

proximate those of A ∈ n×n can be reduced to the question of how well
the eigenvalues of the leading m ×m upper left block (or leading principal

submatrix) approximate those of the entire matrix.

Cauchy’s Interlacing Theorem

Theorem 2.3. Let the Hermitian matrix A ∈ n×n
with eigenvalues

λ1 ≤ · · · ≤ λn be partitioned as

A =
�
H B

∗

B R

�
,

where H ∈ m×m
, B ∈ (n−m)×m

, and R ∈ (n−m)×(n−m)
. Then the

eigenvalues θ1 ≤ · · · ≤ θm of H satisfy

λk ≤ θk ≤ λk+n−m. (2.4)

Before proving the Interlacing Theorem, we offer a graphical illustration.
Consider the matrix

A =





2 −1
−1 2 . . .

. . . . . . −1
−1 2




∈ n×n, (2.5)
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48 Chapter 2. Hermitian Matrices

0 0.5 1 1.5 2 2.5 3 3.5 4

1

3

5

7

9

11

13

15

17

19

21

eigenvalues of H ∈ m×m

m

Figure 2.1. Illustration of Cauchy’s Interlacing Theorem: the vertical gray lines
mark the eigenvalues λ1 ≤ · · · ≤ λn of A in (2.5), while the black dots show the
eigenvalues θ1 ≤ · · · ≤ θm of H for m = 1, . . . , n = 21.

which famously arises as a discretization of a second derivative operator.
Figure 2.1 illustrates the eigenvalues of the upper-left m ×m block of this
matrix for m = 1, . . . , n for n = 16. As m increases, the eigenvalues θ1 and
θm of H tend toward the extreme eigenvalues λ1 and λn of A. Notice that
for any fixed m, at most one eigenvalue of H falls in the interval [λ1, λ2), as
guaranteed by the Interlacing Theorem: λ2 ≤ θ2.

The proof of the Cauchy Interlacing Theorem will utilize a fundamental
result whose proof is a basic exercise in dimension counting.

Lemma 2.4. Let U and V be subspaces of
n

such that

dim(U) + dim(V) > n.

Then the intersection U ∩ V is nontrivial, i.e., there exists a nonzero

vector x ∈ U ∩ V.

Proof of Cauchy’s Interlacing Theorem. Let u1, . . . ,un and z1, . . . , zm

denote the eigenvectors of A and H associated with eigenvalues λ1 ≤ · · · ≤
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2.1. Cauchy Interlacing Theorem 49

λn and θ1 ≤ · · · ≤ θm. Define the spaces

�Uk = span{uk, . . . ,un}, Zk = span{z1, . . . , zk}.

To compare length-m vectors associated with H to length-n vectors associ-
ated with A, consider

Yk =
��

z

0

�
∈ n : z ∈ Zk

�
.

Since dim(�U) = n−k+1 and dim(Yk) = dim(Zk) = k, the preceding lemma
ensures the existence of some nonzero

w ∈ �Uk ∩ Yk.

Since the nonzero vector w ∈ Yk, it must be of the form

w =
�
z

0

�

for nonzero z ∈ Zk. Thus

w
∗
Aw = [ z∗ 0 ]

�
H B

∗

B R

� �
z

0

�
= z

∗
Hz, z ∈ Zk.

The proof now readily follows from the optimization characterizations de-
scribed in Theorem 2.2:

λk = min
v∈bUk

v
∗
Av

v∗v
≤ w

∗
Aw

w∗w
=

z
∗
Hz

z∗z
≤ max

x∈Zk

x
∗
Hx

x∗x
= θk.

The proof of the second inequality in (2.4) follows by applying the first
inequality to −A. (Proof from [Par98].)

For convenience we state a version of the interlacing theorem when H is
the compression of A to some general subspace R(Qm) = span{q1, . . . ,qm},
as motivated earlier in this section.

Cauchy’s Interlacing Theorem for Compressions

Corollary 2.5. Given any Hermitian matrix A ∈ n×n
and subunitary

Qm ∈ n×m
, label the eigenvalues of A as λ1 ≤ λ2 ≤ · · · ≤ λn and the

eigenvalues of Q
∗
mAQm as θ1 ≤ θ2 ≤ · · · θm. Then

λk ≤ θk ≤ λk+n−m. (2.6)
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50 Chapter 2. Hermitian Matrices

We conclude this section with an observation that has important impli-
cations for algorithms that approximate eigenvalues of very large Hermitian
matrix A with those of the small matrix H = Q

∗
AQ for some subunitary

matrix Q ∈ n×m for m � n. (In engineering applications n = 106 is
common, and n = 109 is not unreasonable.) The matrix Q is designed so
that its range approximates the span of the m eigenvectors associated with
the smallest m eigenvalues of A.

Where do the eigenvalues of H fall, relative to the eigenvalues of A? The
Cauchy Interlacing Theorem ensures that eigenvalues cannot ‘clump up’ at
the ends of the spectrum of A. For example, θ1 is the only eigenvalue of H

that can possibly fall in the interval [λ1, λ2), while both θ1 and θ2 can both
possibly fall in the interval [λ2, λ3).

interval [λ1, λ2) [λ2, λ3) [λ3, λ4) · · · (λn−2, λn−1] (λn−1, λn]
max # eigs of
H possibly in 1 2 3 · · · 2 1
the interval

That fact that an analogous result limiting the number of eigenvalues
of H near the extreme eigenvalues of A does not hold for general non-
Hermitian matrices adds substantial complexity to the analysis of algorithms
that compute eigenvalues.

2.2 Variational Characterization of Eigenvalues

The optimization characterization of eigenvalues given in Theorem 2.2 relied
on knowledge of all the preceding (or succeeding) eigenvectors, a significant
drawback when we wish to discover information about the interior eigenval-
ues of A. Using the Cauchy Interlacing Theorem, we can develop a more
general characterization that avoids this shortcoming.

As usual, label the eigenvalues of A as λ1 ≤ λ2 ≤ · · · ≤ λn, with associ-
ated orthonormal eigenvectors u1,u2, . . . ,un. Given any subunitary matrix
Qk ∈ n×k with orthonormal columns q1, . . . ,qk, the Cauchy Interlacing
Theorem (Corollary 2.5) implies

λk ≤ θk = max
v∈ k

v
∗(Q∗

kAQk)v
v∗v

where the maximization follows from applying Theorem 2.2 to Q
∗
kAQk. We

can write this maximization as

θk = max
v∈ k

v
∗(Q∗

kAQk)v
v∗v

= max
v∈ k

(Qkv)∗A(Qkv)
(Qkv)∗(Qkv)

= max
x∈span{q1,...,qk}

x
∗
Ax

x∗x
.
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2.3. Positive Definite Matrices 51

Thus, θk is the maximum Rayleigh quotient for A, restricted to the k-
dimensional subspace span{q, . . . ,qk}. We can summarize: if we maximize
the Rayleigh quotient over a k-dimensional subspace, the result θk must be
at least as large as λk.

However, by Theorem 2.2, we know that

λk = max
v∈span{u1,...,uk}

v
∗
Av

v∗v
. (2.7)

Thus, there exists a distinguished k-dimensional subspace such that the
maximum Rayleigh quotient over that subspace is θk = λk. From this it
follows that

λk = min
dim(U)=k

max
v∈U

v
∗
Av

v∗v
,

with the minimum attained when U = span{u1, . . . ,uk}. Likewise, we can
make an analogous statement involving maximizing a minimum Rayleigh
quotient over n − k + 1-dimensional subspaces. These are known as the
Courant–Fischer minimax characterizations of eigenvalues.

Courant–Fischer Characterization of Eigenvalues

Theorem 2.6. For a Hermitian matrix A ∈ n×n
,

λk = min
dim(U)=k

max
v∈U

v
∗
Av

v∗v
= max

dim(U)=n−k+1
min
v∈U

v
∗
Av

v∗v
. (2.8)

2.3 Positive Definite Matrices

A distinguished class of Hermitian matrices have Rayleigh quotients that
are always positive. Matrices of this sort are so useful in both theory and
applications that they have their own nomenclature.

Positive Definite Matrices and Kin

Let A be Hermitian. Then
if v

∗
Av > 0 for all nonzero v, then A is positive definite;

if v
∗
Av ≥ 0 for all v, then A is positive semidefinite;

if v
∗
Av < 0 for all nonzero v, then A is negative definite;

if v
∗
Av ≤ 0for all v, then A is negative semidefinite;

if v
∗
Av takes positive and negative values, then A is indefinite.
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52 Chapter 2. Hermitian Matrices

While most of the following results are only stated for positive definite
matrices, obvious modifications extend them to the negative definite and
semi-definite cases.

Suppose that u ∈ n is a unit-length eigenvector of the Hermitian matrix
U ∈ n×n corresponding to the eigenvalue λ. Then u

∗
Au = λu

∗
u = λ.

If A is positive definite, then λ = u
∗
Au > 0. Hence, all eigenvalues of a

Hermitian positive definite matrix must be positive. On the other hand,
suppose A is a Hermitian matrix whose eigenvalues λ1 ≤ · · · ≤ λn are all
positive. Then let u1, . . . ,un denote an orthonormal basis of eigenvectors,
so that any v ∈ n can be written as

v =
n�

j=1

γjuj .

As seen throughout this chapter,

v
∗
Av =

n�

j=1

λj |γj |2 ≥ λ1

n�

j=1

|γj |2.

If v �= 0, then 0 �= �v�2 =
�n

j=1 |γj |2, and since all the eigenvalues are
positive, we must have

v
∗
Av > 0.

We have just proved a simple but fundamental fact.

Theorem 2.7. A Hermitian matrix is positive definite if and only if all

its eigenvalues are positive.

This result, an immediate consequence of the definition of positive defi-
niteness, provides one convenient way to characterize positive definite matri-
ces; it also implies that all positive definite matrices are invertible. (Positive
semidefinite matrices only have nonnegative eigenvalues, and hence they can
be singular.)

Taking v to be the kth column of the identity matrix, v = ek, we also
see that positive definite matrices must have positive entries on their main
diagonal:

0 < v
∗
Av = e

∗
kAek = ak,k.

Similarly, Q∗
AQ is positive definite for any subunitary Q, by the Cauchy

Interlacing Theorem.
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2.3. Positive Definite Matrices 53

2.3.1 Roots of positive semidefinite matrices

Some applications and theoretical situations warrant taking a root of a ma-
trix: given some A, can we find B such that B

k = A? This topic, which is
more intricate than it might first appear, shall be covered in more detail in
Chapter 6, but here can we can thoroughly dispose of one very important
special case: positive semidefinite matrices.

Consider first the case of k = 2. Even a matrix as simple as the identity
has numerous square roots: square any of the following matrices and you
obtain I:

�
1 0
0 1

�
,

�
1 0
0 −1

�
,

�
−1 0
0 1

�
,

�
−1 0
0 −1

�
.

Even the zero matrix has a few square roots, some not even Hermitian:
�

0 0
0 0

�
,

�
0 1
0 0

�
,

�
0 0
1 0

�
.

Yet in each of these cases, you know there is one “right” square root: the first
ones listed – that is, the positive semidefinite square root of these positive
semidefinite matrices I and 0. The others are just “monsters” [Lak76].

kth Root of a Positive Definite Matrix

Theorem 2.8. Let k > 1 be an integer. For each Hermitian positive

semidefinite matrix A ∈ n×n
, there exists a unique Hermitian positive

semidefinite matrix B ∈ n×n
such that B

k = A.

Proof. (See, e.g., [HJ85].) The existence of the kth root is straightforward.
Unitarily diagonalize A to obtain A = UΛU

∗, where

Λ =




λ1

. . .
λn



 .

Now define

D :=




λ1/k

1
. . .

λ1/k
n



 ,

where here we are taking the nonnegative kth root of each eigenvalue. Then
define the Hermitian positive semidefinite matrix B = UDU

∗, so that

B
k = UD

k
U
∗ = UΛU

∗ = A.
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54 Chapter 2. Hermitian Matrices

The proof of uniqueness needs a bit more care. The B just constructed
is one Hermitian positive semidefinite kth root of A; now suppose C is some
Hermitian positive semidefinite matrix with C

k = A. We shall confirm that
C = B. Our strategy will first show that B and C commute: this implies
simultaneous diagonalization by way of Theorem 1.13, which leads to the
desired conclusion.

One can always construct a polynomial φ of degree n − 1 (or less) that
satisfies

φ(λj) = λ1/k
j .

For example, if λ1, . . . , λp are the distinct eigenvalues of A, this polynomial
can be written in the Lagrange form

φ(z) =
p�

j=1

λ1/k
j

� p�

�=1
��=j

z − λ�

λj − λ�

�
;

see, e.g., [SM03, §6.2]. Now evaluate φ at A to obtain

φ(A) = φ(UΛU
∗) = Uφ(Λ)U∗ = U




φ(λ1)

. . .
φ(λn)



U
∗

= U




λ1/k

1
. . .

λ1/k
n



U
∗ = B,

i.e., φ(A) = B. We shall use this fact to show that B and C commute:

BC = φ(A)C = φ(Ck)C = Cφ(Ck) = Cφ(A) = CB,

where we have used the fact that C commutes with φ(Ck), since φ(Ck) is
comprised of powers of C.

Invoking Theorem 1.13 for the Hermitian (hence diagonalizable) matrices
B and C, we can find some V for which VBV

−1 and VCV
−1 are both

diagonal. The entries on these diagonals must be the eigenvalues of B and
C. Without loss of generality, assume that V produces the eigenvalues of
B in the order

VBV
−1 =




λ1/k

1
. . .

λ1/k
n



 .
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(If this is not the case, simply permute the columns of V order the eigen-
values in this way.) Label the eigenvalues of C as γ1, . . . , γn:

VCV
−1 =




γ1

. . .
γn



 .

Since A = B
k = C

k, we have VB
k
V
−1 = VC

k
V
−1, so

VB
k
V
−1 =




λ1

. . .
λn



 =




γk

1
. . .

γk
n



 = VC
k
V
−1.

Since C is positive semidefinite, the eigenvalues of C are nonnegative, hence
we must conclude that γj = λ1/k

j for j = 1, . . . , n. Since B and C have the
same eigenvalues and eigenvectors, they are the same matrix: B = C. It
follows that the Hermitian positive definite kth root of A is unique.

2.3.2 Positive definiteness in optimization

Positive definite matrices arise in many applications. For example, Taylor’s
expansion of a sufficiently smooth function f : n → about a point
x0 ∈ n takes the form

f(x0 + c) = f(x0) + c
∗∇f(x0) +

1
2
c
∗
H(x0)c + O(�c�3), (2.9)

∇f(x0) ∈ n is the gradient of f evaluated at x0, and H(x0) ∈ n×n is the
Hessian of f ,

[H ] =





∂2f

∂x2
1

· · · ∂2f

∂xn∂x1
... . . . ...

∂2f

∂x1∂xn
· · · ∂2f

∂x2
n




.

Note that H(x0) is Hermitian provided the mixed partial derivatives are
equal. We say x0 is a stationary point when ∇f(x0) = 0. In the immediate
vicinity of such a point equation (2.9) shows that f behaves like

f(x0 + c) = f(x0) +
1
2
c
∗
H(x0)c + O(�c�3),

and so x0 is a local minimum if all local changes c cause f to increase,
i.e., c

∗
H(x0)c > 0 for all c �= 0. Hence x0 is a local minimum provided
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the Hessian is positive definite, and a local maximum when the Hessian
is negative definite. Indefinite Hessians correspond to saddle points, with
the eigenvectors of the Hessian pointing in the directions of increase (pos-
itive eigenvalues) and decrease (negative eigenvalues). For this and other
examples, see [HJ85].
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