
CAAM 402/502 Spring 2013
Homework 2
Solutions

1. Problem XVII.1.1 in Lang. Let E be a vector space and let v1, ..., vn ∈ E be a basis for E. Show that
any linear map λ : E → F into the normed vector space F is continuous.

Proof. Let us denote the norm of F by ‖ ·‖F . We also equip the finite dimensional vector space E with
the norm ‖ · ‖∞ defined in terms of the basis {v1, ..., vn} as follows. Given x ∈ E, let x =

∑n
i=1 αivi

where the scalars αi are uniquely determined by x. Then ‖x‖∞ = maxi |αi|. We brake the proof into
2 claims.

Claim 1: The linear map λ : (E, ‖ · ‖∞) → (F, ‖ · ‖F ) is continuous. Proof: In virtue of the result
found in Lang page 455, we may equivalently prove that λ is bounded. Let x ∈ E be arbitrary. There
exist scalars {α1, ..., αn} uniquely determined by x such that x =

∑n
i=1 αivi. Then

‖λ(x)‖F =

∥∥∥∥ n∑
i=1

αiλ(vi)

∥∥∥∥
F

≤
n∑
i=1

|αi|‖λ(vi)‖F ≤
(

max
i
|αi|
) n∑
i=1

‖λ(vi)‖F = C‖x‖∞

where C =
∑n
i=1 ‖λ(vi)‖F is clearly independent of x. Hence λ is bounded.

Claim 2: Let ‖ · ‖E be any norm on E. Then the linear map λ : (E, ‖ · ‖E)→ (F, ‖ · ‖F ) is continuous.
Proof: Again we show boundedness. We use Theorem 4.3 (Lang page 145) on the equivalence of norms
for finite-dimensional spaces. Then there exists a constant K > 0 such that

‖x‖∞ ≤ K‖x‖E , for all x ∈ E

Then, from Claim 1, we have that,

‖λ(x)‖F ≤ C‖x‖∞ ≤ CK‖x‖E , for all x ∈ E

which makes λ a bounded map.

2. Let f : [−1, 1]→ R de defined as

f(x) =

{
3x2, if x ∈ Q ∩ [−1, 1];
0, otherwise.

Show that f is not differentiable at any point in [−1, 1] except for x = 0.

Proof. Since differentiability implies continuity, then f cannot be differentiable at points where it is
not continuous. Now we show that f is differentiable at x = 0 and that f ′(0) = 0. Consider h 6= 0 and

0 ≤
∣∣∣∣f(h)− f(0)

h

∣∣∣∣ =
f(h)

|h|
≤ 3h2

|h|
= 3|h|.

So in the limit as h→ 0, we obtain that f ′(0) = 0.
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3. Problem XVII.1.4 in Lang. Let E, F and G be normed vector spaces. A map

λ : E × F → G

is said to be bilinear if it satisfies the conditions,

λ(v, w1 + w2) = λ(v, w1) + λ(v, w2)

λ(v1 + v2, w) = λ(v1, w) + λ(v2, w)

λ(cv, w) = cλ(v, w) = λ(v, cw)

for all v, vi ∈ E, w, wi ∈ F and c ∈ R

(a) Show that a bilinear map λ is continuous if and only if there exists (C > 0) such that for all
(v, w) ∈ E × F we have

|λ(v, w)| ≤ C|v||w|

Proof. “⇒” , λ is continuous ⇒ λ is continuous at (0, 0). This means that there exist δ1, δ2 > 0
such that

|vi| ≤ δ1, |wi| ≤ δ2 ⇒ |λ(vi, wi)− λ(0, 0)| ≤ 1

We have λ(0, 0) = 0 from third property of bilinear map. Hence

|vi| ≤ δ1, |wi| ≤ δ2 ⇒ |λ(vi, wi)| ≤ 1

Consider for any v ∈ E, w ∈ F , vi =
v

|v|
δ1 and wi =

w

|w|
δ2. Clearly |vi| = δ1 and |wi| = δ2.

Therefore we have,

λ

(
v

|v|
δ1,

w

|w|
δ2

)
≤ 1⇒ δ1

|v|
δ2
|w|
|λ(v, w)| ≤ 1⇒ |λ(v, w)| ≤ 1

δ1δ2
|v||w| ⇒ |λ(v, w)| ≤ C|v||w|

with C =
1

δ1δ2
.

“⇐” Assume that there exists C > 0 such that |λ(v, w)| ≤ C|v||w| for all (v, w) ∈ E×F . For any

ε > 0 and (vi, wi) ∈ E × F , pick δ = min

(
1,

ε

C(1 + |vi|+ |wi|)

)

|λ(v, w)− λ(vi, wi)| = |λ(v − vi, wi) + λ(v − vi, w − wi) + λ(vi, w − wi)|
≤ |λ(v − vi, wi)|+ |λ(v − vi, w − wi)|+ |λ(vi, w − wi)|
≤ C|v − vi||wi|+ C|v − vi||w − wi|+ C|vi||w − wi|
< Cδ|wi|+ Cδ2 + Cδ|vi| for |v − vi| < δ, |w − wi| < δ

< ε

Hence λ is continuous at every (vi, wi) ∈ E × F

(b) Let v ∈ E be fixed. Show that if λ is continuous, then the map λv : F → G given by w → λ(v, w)
is a continous linear map.

Proof. Let α, β ∈ R and w1, w2 ∈ F .

λv(αw1+βw2) = λ(v, αw1+βw2) = λ(v, αw1)+λ(v, βw2) = αλ(v, w1)+βλ(v, w2) = αλv(w1)+βλv(w2)

Hence λv is linear.

|λv(w)| = |λ(v, w)| ≤ C|v||w| = Cv|w| ⇒ |λv(w)| ≤ Cv|w| Cv = C|v|

Hence λv is bounded and linear. Hence λv is a continuous linear map.

2



4. Let S be an open and connected set in Rn, and consider the differentiable function f : S → Rm with
derivative f ′(c) = 0 (the linear map zero), for all c ∈ S. Prove that f is constant. Hint: Use the result
of Problem 1 below, which says that S is polygonally connected.

Proof. Fix a ∈ S and let x ∈ S. Since S is open and connected, it is polygonally connected (Problem 1
for 502). Thus, there exist points x0 = a, x1, · · · , xk = x such that L(xj−1, xj) (line segment between
two points) is in S for all j = 1, · · · , k.
By the fundamental theorem of calculus we have that

f(xj)− f(xj−1) =

∫ 1

0

f ′(txj + (1− t)xj−1)dt (xj − xj−1) = 0

for j = 1, · · · , k. Summing over j we get

0 =

k∑
j=1

(f(xj)− f(xj−1)) = f(x)− f(a).

Hence, f(x) = f(a) for all x ∈ S, that is, f is constant.
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ADDITIONAL PROBLEMS FOR CAAM 502

1. Let S be an open and connected set in Rn. Prove that S is polygonally connected, ie., any two points
x and y in S can be joined by a polygonal line.

Proof. Since S is connected, then the only set two sets in S that are both open and closed (with respect
to S) are the whole set S and the empty set . Assume that S is not empty and let a ∈ S. Let C ⊂ S
denote the set of all the points in S that are polygonally connected to a. This set C is clearly nonempty
since a is polygonally to itself. Now we claim that C is both open and closed with respect to S.

We proceed to prove openness first. Let x ∈ C ⊂ S. Since S is open in Rn, then there exists r > 0 such
that Br(x) ⊂ S. Let y ∈ Br(x) be arbitrary. Notice that the line segment from x to y stays within
Br(x) ⊂ S (by convexity). Now since x ∈ C there is a polygonal line in S from a to x. We simply join
this line with the line segment from x to y to obtain the desired polygonal line from a to y. Hence we
have that Br(x) ⊂ C which implies that C is open in S.

Finally we proceed to show that C is closed with respect to S or equivalent that the complement S \C
is open. Take x ∈ S \ C arbitrary (no polygonall line from a to x). Since S is open in Rn, then there
exists r > 0 such that Br(x) ∈ S. No point y in the ball Br(x) can belong to C, otherwise (like before)
we could join a line segment to connected to the center of the ball which is x, and this cannot happen
since x /∈ C. Hence Br(x) ⊂ S \ C which makes S \ C open in S.

Since a was chosen arbitrarily in S, then we conclude that S is polygonally connected.

2. Let E and F be normed vector spaces and denote by L2(E,F ) the space of continuous bilinear maps
of E ×E → F . Let λ ∈ L2(E,F ) and define ‖λ‖ to be the greatest lower bound of all numbers C > 0
such that

‖λ(v1, v2)‖F ≤ C‖v1‖E‖v2‖E ∀v1, v2 ∈ E

Show that ‖λ‖ is a norm in λ ∈ L2(E,F ) and verify that its definition is equivalent to

‖λ‖ = sup
v1,v2 6=0

‖λ(v1, v2)‖F
‖v1‖E‖v2‖E

Proof. First we verify the equivalence of definitions. This follows from the fact that the greatest lower
bound of all C’s that satisfy the above inequality coincides with the least upper bound of all C’s that
do not satisfy the same inequality. Now we check the axioms of a norm.

N1. ‖λ‖ ≥ 0 and ‖λ‖ = 0 iff λ = 0

‖λ‖ is the greatest lower bound of all C’s that satisfy the above inequality. Hence

‖λ(v1, v2)‖F
‖v1‖E‖v2‖E

≤ ‖λ‖

‖·‖F is a norm, hence ‖λ(v1, v2)‖F ≥ 0 ⇒ ‖λ‖ ≥ 0.

If ‖λ‖ = 0 ⇒ ‖λ(v1, v2)‖F = 0, ∀v1, v2 ∈ E ⇒ λ(v1, v2) = 0 , ∀v1, v2 ∈ E. Hence λ = 0

N2. For any α ∈ R ‖αλ‖ = |α|‖λ‖
For any C > 0 satisfying the given inequality, we have

‖αλ(v1, v2)‖F = |α|‖λ(v1, v2)‖F ≤ |α|C‖v1‖E‖v2‖E

If ‖λ‖ is the greatest lower bound of all possible numbers C, |α|‖λ‖ is the greatest lower bound
of all possible numbers |α|C. Hence ‖αλ‖ = |α|‖λ‖
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N3. ‖λ1 + λ2‖ ≤ ‖λ1‖+ ‖λ2‖ for any λ1, λ2 ∈ L2(E,F )

We have
‖λ1(v1, v2)‖F ≤ ‖λ1‖‖v1‖E‖v2‖E

and
‖λ2(v1, v2)‖F ≤ ‖λ2‖‖v1‖E‖v2‖E

by adding the above two inequalities,

‖λ1(v1, v2)‖F + ‖λ2(v1, v2)‖F ≤ ‖λ1‖‖v1‖E‖v2‖E + ‖λ2‖‖v1‖E‖v2‖E = (‖λ1‖+ ‖λ2‖)‖v1‖E‖v2‖E

From the norm property of ‖·‖F and the above inequality,

‖(λ1 + λ2)(v1, v2)‖F ≤ ‖λ1(v1, v2)‖F + ‖λ2(v1, v2)‖F ≤ (‖λ1‖+ ‖λ2‖)‖v1‖E‖v2‖E

From the definition, ‖λ1 + λ2‖ ≤ C = ‖λ1‖+ ‖λ2‖.

3. Let E and F be normed vector spaces and λ ∈ L(E,L(E,F )). Let also fλ ∈ L2(E,F ) be the continuous
bilinear map defined by

fλ(v1, v2) = [λ(v1)](v2) ∀v1, v2 ∈ E

Prove that ‖fλ‖ = ‖λ‖

Proof.

‖λ‖ = sup
v1 6=0

‖λ(v1)‖L(E,F )

‖v1‖E
= sup
v1 6=0

supv2 6=0
‖[λ(v1)](v2)‖F
‖v2‖E

‖v1‖E
= sup
v1,v2 6=0

‖[λ(v1)](v2)‖F
‖v2‖E‖v1‖E

= ‖fλ‖
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