CAAM 402/502 Spring 2013

Homework 2

Solutions

1. Problem XVII.1.1 in Lang. Let E be a vector space and let $v_{1}, \ldots, v_{n} \in E$ be a basis for E. Show that any linear map $\lambda: E \rightarrow F$ into the normed vector space F is continuous.

Proof. Let us denote the norm of F by $\|\cdot\|_{F}$. We also equip the finite dimensional vector space E with the norm $\|\cdot\|_{\infty}$ defined in terms of the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ as follows. Given $x \in E$, let $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$ where the scalars α_{i} are uniquely determined by x. Then $\|x\|_{\infty}=\max _{i}\left|\alpha_{i}\right|$. We brake the proof into 2 claims.

Claim 1: The linear map $\lambda:\left(E,\|\cdot\|_{\infty}\right) \rightarrow\left(F,\|\cdot\|_{F}\right)$ is continuous. Proof: In virtue of the result found in Lang page 455 , we may equivalently prove that λ is bounded. Let $x \in E$ be arbitrary. There exist scalars $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ uniquely determined by x such that $x=\sum_{i=1}^{n} \alpha_{i} v_{i}$. Then

$$
\|\lambda(x)\|_{F}=\left\|\sum_{i=1}^{n} \alpha_{i} \lambda\left(v_{i}\right)\right\|_{F} \leq \sum_{i=1}^{n}\left|\alpha_{i}\right|\left\|\lambda\left(v_{i}\right)\right\|_{F} \leq\left(\max _{i}\left|\alpha_{i}\right|\right) \sum_{i=1}^{n}\left\|\lambda\left(v_{i}\right)\right\|_{F}=C\|x\|_{\infty}
$$

where $C=\sum_{i=1}^{n}\left\|\lambda\left(v_{i}\right)\right\|_{F}$ is clearly independent of x. Hence λ is bounded.

Claim 2: Let $\|\cdot\|_{E}$ be any norm on E. Then the linear map $\lambda:\left(E,\|\cdot\|_{E}\right) \rightarrow\left(F,\|\cdot\|_{F}\right)$ is continuous. Proof: Again we show boundedness. We use Theorem 4.3 (Lang page 145) on the equivalence of norms for finite-dimensional spaces. Then there exists a constant $K>0$ such that

$$
\|x\|_{\infty} \leq K\|x\|_{E}, \quad \text { for all } x \in E
$$

Then, from Claim 1, we have that,

$$
\|\lambda(x)\|_{F} \leq C\|x\|_{\infty} \leq C K\|x\|_{E}, \quad \text { for all } x \in E
$$

which makes λ a bounded map.
2. Let $f:[-1,1] \rightarrow \mathbb{R}$ de defined as

$$
f(x)= \begin{cases}3 x^{2}, & \text { if } x \in \mathbb{Q} \cap[-1,1] ; \\ 0, & \text { otherwise. }\end{cases}
$$

Show that f is not differentiable at any point in $[-1,1]$ except for $x=0$.
Proof. Since differentiability implies continuity, then f cannot be differentiable at points where it is not continuous. Now we show that f is differentiable at $x=0$ and that $f^{\prime}(0)=0$. Consider $h \neq 0$ and

$$
0 \leq\left|\frac{f(h)-f(0)}{h}\right|=\frac{f(h)}{|h|} \leq \frac{3 h^{2}}{|h|}=3|h| .
$$

So in the limit as $h \rightarrow 0$, we obtain that $f^{\prime}(0)=0$.
3. Problem XVII.1.4 in Lang. Let E, F and G be normed vector spaces. A map

$$
\lambda: E \times F \rightarrow G
$$

is said to be bilinear if it satisfies the conditions,

$$
\begin{aligned}
\lambda\left(v, w_{1}+w_{2}\right) & =\lambda\left(v, w_{1}\right)+\lambda\left(v, w_{2}\right) \\
\lambda\left(v_{1}+v_{2}, w\right) & =\lambda\left(v_{1}, w\right)+\lambda\left(v_{2}, w\right) \\
\lambda(c v, w) & =c \lambda(v, w)=\lambda(v, c w)
\end{aligned}
$$

for all $v, v_{i} \in E, w, w_{i} \in F$ and $c \in \mathbb{R}$
(a) Show that a bilinear map λ is continuous if and only if there exists $(C>0)$ such that for all $(v, w) \in E \times F$ we have

$$
|\lambda(v, w)| \leq C|v||w|
$$

Proof. " \Rightarrow ", λ is continuous $\Rightarrow \lambda$ is continuous at $(0,0)$. This means that there exist $\delta_{1}, \delta_{2}>0$ such that

$$
\left|v_{i}\right| \leq \delta_{1},\left|w_{i}\right| \leq \delta_{2} \Rightarrow\left|\lambda\left(v_{i}, w_{i}\right)-\lambda(0,0)\right| \leq 1
$$

We have $\lambda(0,0)=0$ from third property of bilinear map. Hence

$$
\left|v_{i}\right| \leq \delta_{1},\left|w_{i}\right| \leq \delta_{2} \Rightarrow\left|\lambda\left(v_{i}, w_{i}\right)\right| \leq 1
$$

Consider for any $v \in E, w \in F, v_{i}=\frac{v}{|v|} \delta_{1}$ and $w_{i}=\frac{w}{|w|} \delta_{2}$. Clearly $\left|v_{i}\right|=\delta_{1}$ and $\left|w_{i}\right|=\delta_{2}$. Therefore we have,

$$
\lambda\left(\frac{v}{|v|} \delta_{1}, \frac{w}{|w|} \delta_{2}\right) \leq 1 \Rightarrow \frac{\delta_{1}}{|v|} \frac{\delta_{2}}{|w|}|\lambda(v, w)| \leq 1 \Rightarrow|\lambda(v, w)| \leq \frac{1}{\delta_{1} \delta_{2}}|v||w| \Rightarrow|\lambda(v, w)| \leq C|v||w|
$$

with $C=\frac{1}{\delta_{1} \delta_{2}}$.
" \Leftarrow " Assume that there exists $C>0$ such that $|\lambda(v, w)| \leq C|v||w|$ for all $(v, w) \in E \times F$. For any $\epsilon>0$ and $\left(v_{i}, w_{i}\right) \in E \times F$, pick $\delta=\min \left(1, \frac{\epsilon}{C\left(1+\left|v_{i}\right|+\left|w_{i}\right|\right)}\right)$

$$
\begin{aligned}
\left|\lambda(v, w)-\lambda\left(v_{i}, w_{i}\right)\right| & =\left|\lambda\left(v-v_{i}, w_{i}\right)+\lambda\left(v-v_{i}, w-w_{i}\right)+\lambda\left(v_{i}, w-w_{i}\right)\right| \\
& \leq\left|\lambda\left(v-v_{i}, w_{i}\right)\right|+\left|\lambda\left(v-v_{i}, w-w_{i}\right)\right|+\left|\lambda\left(v_{i}, w-w_{i}\right)\right| \\
& \leq C\left|v-v_{i}\right|\left|w_{i}\right|+C\left|v-v_{i}\right|\left|w-w_{i}\right|+C\left|v_{i}\right|\left|w-w_{i}\right| \\
& <C \delta\left|w_{i}\right|+C \delta^{2}+C \delta\left|v_{i}\right| \quad \text { for }\left|v-v_{i}\right|<\delta,\left|w-w_{i}\right|<\delta \\
& <\epsilon
\end{aligned}
$$

Hence λ is continuous at every $\left(v_{i}, w_{i}\right) \in E \times F$
(b) Let $v \in E$ be fixed. Show that if λ is continuous, then the map $\lambda_{v}: F \rightarrow G$ given by $w \rightarrow \lambda(v, w)$ is a continous linear map.

Proof. Let $\alpha, \beta \in \mathbb{R}$ and $w_{1}, w_{2} \in F$.
$\lambda_{v}\left(\alpha w_{1}+\beta w_{2}\right)=\lambda\left(v, \alpha w_{1}+\beta w_{2}\right)=\lambda\left(v, \alpha w_{1}\right)+\lambda\left(v, \beta w_{2}\right)=\alpha \lambda\left(v, w_{1}\right)+\beta \lambda\left(v, w_{2}\right)=\alpha \lambda_{v}\left(w_{1}\right)+\beta \lambda_{v}\left(w_{2}\right)$
Hence λ_{v} is linear.

$$
\left|\lambda_{v}(w)\right|=|\lambda(v, w)| \leq C|v||w|=C_{v}|w| \Rightarrow\left|\lambda_{v}(w)\right| \leq C_{v}|w| \quad C_{v}=C|v|
$$

Hence λ_{v} is bounded and linear. Hence λ_{v} is a continuous linear map.
4. Let S be an open and connected set in \mathbb{R}^{n}, and consider the differentiable function $f: S \rightarrow \mathbb{R}^{m}$ with derivative $f^{\prime}(c)=0$ (the linear map zero), for all $c \in S$. Prove that f is constant. Hint: Use the result of Problem 1 below, which says that S is polygonally connected.

Proof. Fix $a \in S$ and let $x \in S$. Since S is open and connected, it is polygonally connected (Problem 1 for 502). Thus, there exist points $x_{0}=a, x_{1}, \cdots, x_{k}=x$ such that $L\left(x_{j-1}, x_{j}\right)$ (line segment between two points) is in S for all $j=1, \cdots, k$.
By the fundamental theorem of calculus we have that

$$
f\left(x_{j}\right)-f\left(x_{j-1}\right)=\int_{0}^{1} f^{\prime}\left(t x_{j}+(1-t) x_{j-1}\right) d t\left(x_{j}-x_{j-1}\right)=0
$$

for $j=1, \cdots, k$. Summing over j we get

$$
0=\sum_{j=1}^{k}\left(f\left(x_{j}\right)-f\left(x_{j-1}\right)\right)=f(x)-f(a)
$$

Hence, $f(x)=f(a)$ for all $x \in S$, that is, f is constant.

ADDITIONAL PROBLEMS FOR CAAM 502

1. Let S be an open and connected set in \mathbb{R}^{n}. Prove that S is polygonally connected, ie., any two points x and y in S can be joined by a polygonal line.

Proof. Since S is connected, then the only set two sets in S that are both open and closed (with respect to S) are the whole set S and the empty set. Assume that S is not empty and let $a \in S$. Let $C \subset S$ denote the set of all the points in S that are polygonally connected to a. This set C is clearly nonempty since a is polygonally to itself. Now we claim that C is both open and closed with respect to S.
We proceed to prove openness first. Let $x \in C \subset S$. Since S is open in \mathbb{R}^{n}, then there exists $r>0$ such that $B_{r}(x) \subset S$. Let $y \in B_{r}(x)$ be arbitrary. Notice that the line segment from x to y stays within $B_{r}(x) \subset S$ (by convexity). Now since $x \in C$ there is a polygonal line in S from a to x. We simply join this line with the line segment from x to y to obtain the desired polygonal line from a to y. Hence we have that $B_{r}(x) \subset C$ which implies that C is open in S.
Finally we proceed to show that C is closed with respect to S or equivalent that the complement $S \backslash C$ is open. Take $x \in S \backslash C$ arbitrary (no polygonall line from a to x). Since S is open in \mathbb{R}^{n}, then there exists $r>0$ such that $B_{r}(x) \in S$. No point y in the ball $B_{r}(x)$ can belong to C, otherwise (like before) we could join a line segment to connected to the center of the ball which is x, and this cannot happen since $x \notin C$. Hence $B_{r}(x) \subset S \backslash C$ which makes $S \backslash C$ open in S.
Since a was chosen arbitrarily in S, then we conclude that S is polygonally connected.
2. Let E and F be normed vector spaces and denote by $L^{2}(E, F)$ the space of continuous bilinear maps of $E \times E \rightarrow F$. Let $\lambda \in L^{2}(E, F)$ and define $\|\lambda\|$ to be the greatest lower bound of all numbers $C>0$ such that

$$
\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F} \leq C\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E} \quad \forall v_{1}, v_{2} \in E
$$

Show that $\|\lambda\|$ is a norm in $\lambda \in L^{2}(E, F)$ and verify that its definition is equivalent to

$$
\|\lambda\|=\sup _{v_{1}, v_{2} \neq 0} \frac{\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F}}{\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}}
$$

Proof. First we verify the equivalence of definitions. This follows from the fact that the greatest lower bound of all C 's that satisfy the above inequality coincides with the least upper bound of all C 's that do not satisfy the same inequality. Now we check the axioms of a norm.

N1. $\|\lambda\| \geq 0$ and $\|\lambda\|=0$ iff $\lambda=0$
$\|\lambda\|$ is the greatest lower bound of all C 's that satisfy the above inequality. Hence

$$
\frac{\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F}}{\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}} \leq\|\lambda\|
$$

$\|\cdot\|_{F}$ is a norm, hence $\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F} \geq 0 \Rightarrow\|\lambda\| \geq 0$.
If $\|\lambda\|=0 \Rightarrow\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F}=0, \forall v_{1}, v_{2} \in E \Rightarrow \lambda\left(v_{1}, v_{2}\right)=0, \forall v_{1}, v_{2} \in E$. Hence $\lambda=0$
N2. For any $\alpha \in \mathbb{R}\|\alpha \lambda\|=|\alpha|\|\lambda\|$
For any $C>0$ satisfying the given inequality, we have

$$
\left\|\alpha \lambda\left(v_{1}, v_{2}\right)\right\|_{F}=|\alpha|\left\|\lambda\left(v_{1}, v_{2}\right)\right\|_{F} \leq|\alpha| C\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}
$$

If $\|\lambda\|$ is the greatest lower bound of all possible numbers $C,|\alpha|\|\lambda\|$ is the greatest lower bound of all possible numbers $|\alpha| C$. Hence $\|\alpha \lambda\|=|\alpha|\|\lambda\|$

N3. $\left\|\lambda_{1}+\lambda_{2}\right\| \leq\left\|\lambda_{1}\right\|+\left\|\lambda_{2}\right\|$ for any $\lambda_{1}, \lambda_{2} \in L^{2}(E, F)$
We have

$$
\left\|\lambda_{1}\left(v_{1}, v_{2}\right)\right\|_{F} \leq\left\|\lambda_{1}\right\|\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}
$$

and

$$
\left\|\lambda_{2}\left(v_{1}, v_{2}\right)\right\|_{F} \leq\left\|\lambda_{2}\right\|\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}
$$

by adding the above two inequalities,

$$
\left\|\lambda_{1}\left(v_{1}, v_{2}\right)\right\|_{F}+\left\|\lambda_{2}\left(v_{1}, v_{2}\right)\right\|_{F} \leq\left\|\lambda_{1}\right\|\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}+\left\|\lambda_{2}\right\|\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}=\left(\left\|\lambda_{1}\right\|+\left\|\lambda_{2}\right\|\right)\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}
$$

From the norm property of $\|\cdot\|_{F}$ and the above inequality,

$$
\left\|\left(\lambda_{1}+\lambda_{2}\right)\left(v_{1}, v_{2}\right)\right\|_{F} \leq\left\|\lambda_{1}\left(v_{1}, v_{2}\right)\right\|_{F}+\left\|\lambda_{2}\left(v_{1}, v_{2}\right)\right\|_{F} \leq\left(\left\|\lambda_{1}\right\|+\left\|\lambda_{2}\right\|\right)\left\|v_{1}\right\|_{E}\left\|v_{2}\right\|_{E}
$$

From the definition, $\left\|\lambda_{1}+\lambda_{2}\right\| \leq C=\left\|\lambda_{1}\right\|+\left\|\lambda_{2}\right\|$.
3. Let E and F be normed vector spaces and $\lambda \in L(E, L(E, F))$. Let also $f_{\lambda} \in L^{2}(E, F)$ be the continuous bilinear map defined by

$$
f_{\lambda}\left(v_{1}, v_{2}\right)=\left[\lambda\left(v_{1}\right)\right]\left(v_{2}\right) \quad \forall v_{1}, v_{2} \in E
$$

Prove that $\left\|f_{\lambda}\right\|=\|\lambda\|$
Proof.

$$
\|\lambda\|=\sup _{v_{1} \neq 0} \frac{\left\|\lambda\left(v_{1}\right)\right\|_{L(E, F)}}{\left\|v_{1}\right\|_{E}}=\sup _{v_{1} \neq 0} \frac{\sup _{v_{2} \neq 0} \frac{\left\|\left[\lambda\left(v_{1}\right)\right]\left(v_{2}\right)\right\|_{F}}{\left\|v_{2}\right\|_{E}}}{\left\|v_{1}\right\|_{E}}=\sup _{v_{1}, v_{2} \neq 0} \frac{\left\|\left[\lambda\left(v_{1}\right)\right]\left(v_{2}\right)\right\|_{F}}{\left\|v_{2}\right\|_{E}\left\|v_{1}\right\|_{E}}=\left\|f_{\lambda}\right\|
$$

