Interpolation

Def: An interpolating approximation to a function $f(x)$ is an expression $P_{n-1}(x)$ (polynomial) whose n degrees of freedom are determined by the requirement that $P_{n-1}(x) = f(x)$ at a set of interpolation pts.

i.e. $P_{n-1}(x_i) = f(x_i)$ for $i = 1, \ldots, n$.

The pts $\{x_i\}_{i=1}^n$ are called interpolation or collocation pts.

How do we find $P_{n-1}(x)$?

Option 1:

We can write $P_{n-1}(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$.

Then use the fact that $P_{n-1}(x_i) = f(x_i)$ to make a linear system to solve for $a_0, a_1, \ldots, a_{n-1}$.

$$
\begin{bmatrix}
1 & x_1 & x_1^2 & \ldots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \ldots & x_2^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_n & x_n^2 & \ldots & x_n^{n-1}
\end{bmatrix} \begin{bmatrix}
a_0 \\
a_1 \\
\vdots \\
a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
f(x_1) \\
f(x_2) \\
\vdots \\
f(x_n)
\end{bmatrix}
$$

Then $\sqrt{\mathbf{a}} = \mathbf{f}$.

The matrix is called the Vandermonde matrix.

It is very ill-conditioned.
Option 2: We can write
\[P_n(x) = \sum_{j=1}^{n} f(x_j) L_j(x) \]
where \(L_j(x) \) is the **Lagrange polynomial** satisfying \(L_j(x_i) = \delta_{ij} \).

This means
\[L_j(x) = \prod_{j \neq i}^{n} \frac{x-x_j}{x_i-x_j} \]

Note: The Lagrange Polynomial is sometimes called the **Cardinal function**.

Q: How do we choose interpolation pts?

Ex: let's approximate
\[f(x) = \exp(x) \text{ on } [-5, 5] \]
\[g(x) = \frac{1}{1+x^2} \text{ on } [-5, 5] \]
using **equispaced pts**.

What do you observe?
To correct the problems we observe we will look to some theorems.

Thm (Cauchy interpolation or Modified Taylor)

Let \(f(x) \) have at least \(n+1 \) derivatives on the interval of interest \(I \) let \(P_n(x) \) be a Lagrange interpolant of degree \(n \). Then
\[
f(x) - P_n(x) = \frac{1}{(n+1)!} \sum_{i=0}^{n} \frac{f^{(n+1)}(\zeta)}{(n+1)!} (x-x_i)^{n+1}
\]

For some \(\zeta \) in the interval containing \(x \in [a, b] \) where \(x \in [x_i, x_{i+1}] \).

Notice: The magnitude of the error will depend on \(\prod_{i=0}^{n} (x-x_i) \) i.e. it depends on the interpolation pts.

Thm (Chebyshev minimal Amplitude Thm)

Of all the polynomials of degree \(n \) with leading coefficient equal to 1, the unique polynomial which has the smallest maximum on \([-1, 1] \) is
\[
T_n(x) = \frac{\sin((n+1)\theta)}{\sin(n\theta)}
\]

i.e. the \(n^{th} \) Chebyshev polynomial divided by \(2^{n-1} \).

In other words, all polynomials of the same degree with leading coefficient of 1 satisfy
\[
\max_{x \in [-1, 1]} |P_n(x)| \geq \max_{x \in [-1, 1]} \left| T_n(x) \right| = \frac{1}{2^n}
\]

Since polynomials are unique,
\[
T_n(x) = \sum_{i=0}^{n} a_i (x-x_i)^i
\]
where \(x_i\) are the roots of \(T_n(x)\).

These are the optimal interpolation pts.
Note: other optimal choices exist depending on the choice of basis.

Important facts about Chebyshev polynomials:
- \(T_n(x) = \cos(n \cos^{-1}(x))\)
- Can be written as a 3 term recursion:
 \[
 \begin{align*}
 T_{n+1}(x) &= 2xT_n(x) - T_{n-1}(x) \\
 T_0 &= 1 \\
 T_1(x) &= x
 \end{align*}
 \]
- \(\int_{-1}^{1} \frac{T_n(x) T_m(x)}{\sqrt{1-x^2}} \, dx = 0\) if \(m \neq n\)

We can choose our polynomial approximation to be:
\[
P_n(x) = \sum_{i=0}^{n} a_i T_i(x)
\]

What if we do not want to evaluate \(P_n(x)\) to find the approximate solution? Value at a pt \(x^*\)?
- Roundoff in computing coefficients
- Roundoff in add. evaluating \(P(x)\) etc.
We can rewrite $P_n(x)$ so that we are solving for the approximate solution at the interpolation pts.

Let $\phi_{m+1}(x)$ denote the $(m+1)$ orthogonal polynomial in a basis. (Chebyshev, Legendre, etc.)

Let $\sum_{j=0}^{n} x_j$ denote the roots of ϕ_{m+1}

In the vicinity of x_j, Taylor tells us

$$\phi_{m+1}(x) \approx \phi_{m+1}(x_j) + \frac{d\phi_{m+1}(x_j)}{dx}(x-x_j) - O((x-x_j)^2)$$

We can normalize the basis function by dividing it by $\phi_{m+1}(x_j)(x-x_j)$

Define $C_j(x) = \frac{\phi_{m+1}(x)}{\phi_{m+1}(x_j)(x-x_j)}$ to be the j^{th} cardinal function.

Note $(j(x_i)) = \sum_{j=0}^{n} 1$ if $i=j$.

$$P_n(x) = \sum_{j=0}^{n} u_j C_j(x)$$

This works for Chebyshev, Legendre, Laguerre, Hermite, etc.
If you want to include endpoints \(x = \pm 1 \)
i.e. have a laballo grid. The cardinal functions
are given by
\[
\phi_j(x) = \frac{(1-x^2) \phi_j(x)}{\left(x-x_j \right)^2 \phi_{n+1}(x_j)} (x-x_j)
\]
\(j = 0, \ldots, n \)