CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 1

Posted Tuesday 26 August 2008. Due Tuesday 2 September 2008.

Young, problems 1.1, 1.2, 1.3, 1.11, 2.4 [20 points each]
1.1 For which $s \in \mathbb{C}$ does the sequence $\left(n^{-s}\right)_{n=1}^{\infty}$ belong to ℓ^{2} ?
1.2 Let $a<b$ in \mathbb{R}. Show that the space $W[a, b]$ of continuously differentiable functions on $[a, b]$, with values in \mathbb{C}, is an inner product space with respect to pointwise addition and scalar multiplication, and inner product

$$
(f, g)_{W}=\int_{a}^{b} f(t) \overline{g(t)}+f^{\prime}(t) \overline{g^{\prime}(t)} \mathrm{d} t
$$

1.3 A trigonometric polynomial is a function of the form

$$
f(x)=\sum_{n=1}^{k} a_{n} \mathrm{e}^{\mathrm{i} \lambda_{n} x}
$$

where $k \in \mathbb{N}, a_{1}, \ldots, a_{k} \in \mathbb{C}$, and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$. The space TP of trigonometric polynomials is a vector space over \mathbb{C} with respect to pointwise addition and scalar multiplication. Prove that the formula

$$
(f, g)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f(x) \overline{g(x)} \mathrm{d} x
$$

defines an inner product on TP.
1.11 Let $k_{\alpha} \in R L^{2}$ be defined by

$$
k_{\alpha}(z)=(1-\bar{\alpha} z)^{-1},
$$

where $|\alpha| \neq 1$. Show that, for $f \in R H^{2}$,

$$
\left(f, k_{\alpha}\right)= \begin{cases}f(\alpha) & \text { if }|\alpha|<1 \\ 0 & \text { if }|\alpha|>1\end{cases}
$$

From Young, page 9:
$R L^{2}$ denotes the space of rational functions which are analytic on the unit circle

$$
\partial \mathbb{D}=\{z \in \mathbb{C}:|z|=1\}
$$

with the usual addition and scalar multiplication and with the inner product

$$
\begin{equation*}
(f, g)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial \mathbb{D}} f(z) \overline{g(z)} \frac{\mathrm{d} z}{z} \tag{*}
\end{equation*}
$$

the integral being taken counter-clockwise around ∂D.
$R H^{2}$ is the subspace of $R L^{2}$ consisting of those rational functions which are analytic on the closed unit disc $\operatorname{clos} \mathbb{D}$, where

$$
\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}
$$

with inner product given by $(*)$.
2.4 Prove that there is no inner product on $C[0,1]$ such that $(f, f)^{1 / 2}=\|f\|_{\infty}$ for all f. (Show that the parallelogram law does not hold for $\|\cdot\|_{\infty}$.)

