CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 3

Posted Tuesday 9 September 2008. Due Tuesday 16 September 2008.

Pick any four of Problems 3.10, 3.x, 4.2, 4.7, 4.9 from Young [25 points each]
3.10 Let A be a non-empty closed convex set in a Hilbert space. Show that A contains a unique vector a of smallest norm and that $\operatorname{Re}(a, a-x) \leq 0$ for all $x \in A$.
3.x A Banach space B is uniformly convex provided that for all $\varepsilon>0$, there exists some $\delta>0$ such that $\left\|\frac{1}{2}(f+g)\right\|>1-\delta$ implies $\|f-g\|<\varepsilon$ for all $f, g \in B$ with $\|f\|=\|g\|=1$.
(a) Prove that all Hilbert spaces are uniformly convex.
(b) Give an example of a Banach space that is not uniformly convex.
(c) Let S be a convex subset of a uniformly convex Banach space B, and suppose there exists at least one point $s \in S$ closest to some $x \in B:\|x-s\|=\inf _{r \in S}\|x-r\|$. Prove that s must be unique.
4.2 Let $e_{j}(z)=z^{j}$ for $z \in \mathbb{C}, j \in \mathbb{Z}$. Show that $\left(e_{j}\right)_{j=-\infty}^{\infty}$ is an orthonormal sequence in $R L^{2}$.
4.7 The first three Legendre polynomials are

$$
P_{0}(x)=1, \quad P_{1}(x)=x, \quad P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) .
$$

Show that the orthonormal vectors in $L^{2}(-1,1)$ obtained by applying the Gram-Schmidt process (see, e.g., Problem 4.6) to $1, x, x^{2}$ are scalar multiples of these.
4.9 Find

$$
\min _{a, b, c \in \mathbb{C}} \int_{-1}^{1}\left|x^{3}-a-b x-c x^{2}\right|^{2} \mathrm{~d} x
$$

(Use the solution of Problem 4.7).

