CAAM 540 · APPLIED FUNCTIONAL ANALYSIS

Problem Set 4

Posted Saturday 27 October 2008. Due Friday 3 October 2008.

Young, problems 4.x, 5.1(a,c), 5.4, 6.8 [25 points each]

4.x Suppose that $\{e_n\}$ and $\{f_n\}$ are orthonormal sequences in a Hilbert space, and assume that $\{e_n\}$ is complete. Show that if

$$\sum \|e_n - f_n\|^2 < 1,$$

then $\{f_n\}$ is also complete.

[Hutson & Pym]

5.1 Find the Fourier series of the following functions on $[-\pi,\pi]$ and use Corollary 5.7 to deduce the stated formulae.

(a)
$$f(x) = x;$$
 $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$
(c) $f(x) = e^{sx};$ $\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + s^2} = \frac{\pi}{s} \coth \pi s.$

[To appreciate the utility of this approach, you might try computing $\sum_{n=1}^{\infty} n^{-2}$ by more direct means.]

5.4 Let

$$g_n(x) = \frac{\mathrm{e}^{\mathrm{i}nx}}{\sqrt{2\pi(1+n^2)}}, \quad n \in \mathbb{Z}, -\pi \le x \le \pi.$$

Show that $(g_n)_{-\infty}^{\infty}$ is an orthonormal sequence in $W[-\pi,\pi]$. Let

$$W_0 = \{ f \in W[-\pi, \pi] : f(\pi) = f(-\pi) \}.$$

Show that sinh is orthogonal to every function in W_0 . Deduce that $(g_n)_{-\infty}^{\infty}$ is not a complete orthonormal sequence in $W[-\pi,\pi]$.

6.8 Let F be a *nonzero* linear functional on a normed space E and let

$$\operatorname{Ker} F = \{ x \in E : F(x) = 0 \}.$$

Show that Ker *F* has co-dimension 1 in *E* (i.e., there exists some fixed $y \in E$ such that any element $x \in E$ can be written in the form $x = z + \gamma y$ for some $z \in \text{Ker } F$ and $\gamma \in \mathbb{C}$).

Deduce that if V is a subspace of E containing KerF then either V = E or V = KerF. Hence show that if F is discontinuous then KerF is dense in E. Conclude that F is continuous if and only if KerF is closed.