CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 4

Posted Saturday 27 October 2008. Due Friday 3 October 2008.
Young, problems 4.x, 5.1(a,c), 5.4, 6.8 [25 points each]
4.x Suppose that $\left\{e_{n}\right\}$ and $\left\{f_{n}\right\}$ are orthonormal sequences in a Hilbert space, and assume that $\left\{e_{n}\right\}$ is complete. Show that if

$$
\sum\left\|e_{n}-f_{n}\right\|^{2}<1
$$

then $\left\{f_{n}\right\}$ is also complete.
[Hutson \& Pym]
5.1 Find the Fourier series of the following functions on $[-\pi, \pi]$ and use Corollary 5.7 to deduce the stated formulae.

$$
\begin{array}{ll}
\text { (a) } f(x)=x ; & \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} \\
\text { (c) } f(x)=\mathrm{e}^{s x} ; & \sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+s^{2}}=\frac{\pi}{s} \operatorname{coth} \pi s
\end{array}
$$

[To appreciate the utility of this approach, you might try computing $\sum_{n=1}^{\infty} n^{-2}$ by more direct means.]
5.4 Let

$$
g_{n}(x)=\frac{\mathrm{e}^{\mathrm{i} n x}}{\sqrt{2 \pi\left(1+n^{2}\right)}}, \quad n \in \mathbb{Z},-\pi \leq x \leq \pi
$$

Show that $\left(g_{n}\right)_{-\infty}^{\infty}$ is an orthonormal sequence in $W[-\pi, \pi]$.
Let

$$
W_{0}=\{f \in W[-\pi, \pi]: f(\pi)=f(-\pi)\}
$$

Show that sinh is orthogonal to every function in W_{0}. Deduce that $\left(g_{n}\right)_{-\infty}^{\infty}$ is not a complete orthonormal sequence in $W[-\pi, \pi]$.
6.8 Let F be a nonzero linear functional on a normed space E and let

$$
\operatorname{Ker} F=\{x \in E: F(x)=0\}
$$

Show that $\operatorname{Ker} F$ has co-dimension 1 in E (i.e., there exists some fixed $y \in E$ such that any element $x \in E$ can be written in the form $x=z+\gamma y$ for some $z \in \operatorname{Ker} F$ and $\gamma \in \mathbb{C})$.
Deduce that if V is a subspace of E containing $\operatorname{Ker} F$ then either $V=E$ or $V=\operatorname{Ker} F$. Hence show that if F is discontinuous then $\operatorname{Ker} F$ is dense in E. Conclude that F is continuous if and only if $\operatorname{Ker} F$ is closed.

