CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 5

Posted Sunday 5 October 2008. Due Friday, 10 October 2008.

Young, 7.9, 7.10, 7.14, 7.36 [25 points each]
7.9 An operator is said to have rank 1 if its range is one-dimensional. Let T be a bounded operator of rank 1 on a Hilbert space H, and let ψ be a non-zero vector in the range of T. Show that there exists $\phi \in H$ such that

$$
T x=(x, \phi) \psi, \quad \text { all } x \in H
$$

and that

$$
\|T\|=\|\phi\|\|\psi\|
$$

7.10 An operator K on $L^{2}(0,1)$ is defined by

$$
(K x)(t)=\int_{0}^{1} \mathrm{e}^{t-s} x(s) \mathrm{d} s, \quad 0<t<1
$$

Use the result of Problem 7.9 to show that

$$
\|K\|=\sinh 1
$$

7.14 Show that the rank 1 operator T of Problem 7.9 satisfies $T^{2}=(\psi, \phi) T$. Hence show that, if $(\psi, \phi) \neq 1$, $I-T$ is invertible and find $(I-T)^{-1}$.
7.36 Use Problem 7.14 to show that the spectrum of the rank 1 operator T of Problem 7.9 is

$$
\sigma(T)=\{0,(\psi, \phi)\}
$$

(assuming $\operatorname{dim} H>1$).

