CAAM 540 · APPLIED FUNCTIONAL ANALYSIS

Problem Set 6

Posted Tuesday 27 October 2008. Due Tuesday 4 November 2008.

Young, 7.40, (7.41 or 7.y), 7.z, 8.13 [25 points each]

7.40 By considering the identity

$$(\lambda I - A)(\lambda I + A) = \lambda^2 I - A^2$$

for any $\lambda \in \mathbb{C}$ and $A \in \mathcal{L}(E)$, E a Banach space, show that $\sigma(A^2) = \{\lambda^2 : \lambda \in \sigma(A)\}$. Deduce that, for any $\lambda \in \sigma(A)$, $|\lambda| \leq ||A^2||^{1/2}$.

7.41 Can you replace 2 by 3 in the previous problem? By $n \in \mathbb{N}$? By -1? Hint: consider principal roots of unity, i.e., $e^{2k\pi i/n}$, $k = 0, \ldots, n-1$.

7.y (Spectral Mapping Theorem) Let p be a degree n polynomial, and suppose $A \in \mathcal{L}(E)$ for a Banach space E. If $p(z) = c_0 + c_1 z + \cdots + c_n z^n$, we define p(A) via

$$p(A) = c_0 I + c_1 A + \dots + c_n A^n.$$

Prove that $\sigma(p(A)) = p(\sigma(A))$, where

$$p(\sigma(A)) = \{p(\lambda) : \lambda \in \sigma(A)\}.$$

Now let r be a rational function of degree (m, n), i.e., r(z) = p(z)/q(z) with p and q polynomials of degree m and n. Suppose that the poles of r are disjoint from $\sigma(A)$ (why?), and define $r(A) = p(A)q(A)^{-1}$. Prove that $\sigma(r(A)) = r(\sigma(A))$.

7.z Banded Laurent operators correspond to doubly-infinite matrices acting on $\ell^p(\mathbb{Z})$ with the constant a_k on the kth diagonal for $-m \leq k \leq n$, with $0 \leq m, n < \infty$ and zero elsewhere. One such example is the doubly-infinite shift operator, which is zero everywhere except for ones on the first superdiagonal,

$$C = \begin{pmatrix} \ddots & \ddots & \ddots & & & \\ \ddots & 0 & 1 & \ddots & & \\ & \ddots & 0 & 1 & \ddots & \\ & & \ddots & \ddots & \ddots & \ddots \end{pmatrix},$$

where we can take m = 0 and n = 1 with $a_0 = 0, a_1 = 1$. If $x = (..., x_{-1}, x_0, x_1, ...) \in \ell^p(\mathbb{Z})$, then

$$Cx = C(\dots, x_{-1}, x_0, x_1, \dots) = (\dots, x_0, x_1, x_2, \dots)$$

(a) Show that for C acting on $\ell^{\infty}(\mathbb{Z})$, $\sigma(C) = \{z \in \mathbb{C} : |z| = 1\}$, and that all $z \in \sigma(C)$ are eigenvalues. Are these same z eigenvalues if C acts on $\ell^{p}(\mathbb{Z})$ for $1 \leq p < \infty$? (b) Now consider general banded Laurent operators on $\ell^{\infty}(\mathbb{Z})$ determined by the coefficients a_{-m}, \ldots, a_n :

Use the result of Problem 7.y (whether you solved that problem or not) to show that

$$\sigma(A) = \{a(z) : |z| = 1\},\$$

where a is the *symbol* of the operator, defined by the Laurent polynomial

$$a(z) = \sum_{k=-m}^{n} a_k z^k.$$

(c) Plot the spectrum $\sigma(A) = \{a(z) : |z| = 1\}$ for a few interesting symbols of your choosing (e.g., using MATLAB). Below are several examples to whet your appetite.

8.13 Let K be a compact Hermitian operator on a Hilbert space H. Show that if K has infinite rank then the range of K is not closed in H.

— Optional Supplemental Problems —

7.27 Let V be the Volterra operator V from Problem 7.8:

$$(Vx)(t) = \int_0^t x(s) \, \mathrm{d}s, \quad 0 < t < 1.$$

Show that $V + V^*$ has rank 1.

7.x Suppose A is a bounded linear operator on the Hilbert space H. Show that

$$\frac{1}{2} \|A\| \le \sup_{\|x\|=1} |(Ax, x)|.$$

(You may find it useful to write A as the sum of Hermitian and skew-Hermitian operators.)

Use this result to show that if (Ax, x) = (Bx, x) for all $x \in H$, then A = B.

An operator $A \in \mathcal{L}(H)$ is called *normal* provided A commutes with its adjoint, i.e., $A^*A = AA^*$. Show that A is normal if and only if $||A^*x|| = ||Ax||$ for all x.