CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 6

Posted Tuesday 27 October 2008. Due Tuesday 4 November 2008.
Young, 7.40 , (7.41 or $7 . y$), $7 . \mathrm{z}, 8.13$ [25 points each]
7.40 By considering the identity

$$
(\lambda I-A)(\lambda I+A)=\lambda^{2} I-A^{2}
$$

for any $\lambda \in \mathbb{C}$ and $A \in \mathcal{L}(E), E$ a Banach space, show that $\sigma\left(A^{2}\right)=\left\{\lambda^{2}: \lambda \in \sigma(A)\right\}$. Deduce that, for any $\lambda \in \sigma(A)$,

$$
|\lambda| \leq\left\|A^{2}\right\|^{1 / 2}
$$

7.41 Can you replace 2 by 3 in the previous problem? By $n \in \mathbb{N}$? By -1 ? Hint: consider principal roots of unity, i.e., $\mathrm{e}^{2 k \pi \mathrm{i} / n}, k=0, \ldots, n-1$.
7.y (Spectral Mapping Theorem) Let p be a degree n polynomial, and suppose $A \in \mathcal{L}(E)$ for a Banach space E. If $p(z)=c_{0}+c_{1} z+\cdots+c_{n} z^{n}$, we define $p(A)$ via

$$
p(A)=c_{0} I+c_{1} A+\cdots+c_{n} A^{n} .
$$

Prove that $\sigma(p(A))=p(\sigma(A))$, where

$$
p(\sigma(A))=\{p(\lambda): \lambda \in \sigma(A)\} .
$$

Now let r be a rational function of degree (m, n), i.e., $r(z)=p(z) / q(z)$ with p and q polynomials of degree m and n. Suppose that the poles of r are disjoint from $\sigma(A)$ (why?), and define $r(A)=$ $p(A) q(A)^{-1}$. Prove that $\sigma(r(A))=r(\sigma(A))$.
7.z Banded Laurent operators correspond to doubly-infinite matrices acting on $\ell^{p}(\mathbb{Z})$ with the constant a_{k} on the k th diagonal for $-m \leq k \leq n$, with $0 \leq m, n<\infty$ and zero elsewhere. One such example is the doubly-infinite shift operator, which is zero everywhere except for ones on the first superdiagonal,

$$
C=\left(\begin{array}{cccccc}
\ddots & \ddots & \ddots & & & \\
\ddots & 0 & 1 & \ddots & & \\
& \ddots & 0 & 1 & \ddots & \\
& & \ddots & \ddots & \ddots & \ddots
\end{array}\right),
$$

where we can take $m=0$ and $n=1$ with $a_{0}=0, a_{1}=1$. If $x=\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right) \in \ell^{p}(\mathbb{Z})$, then

$$
C x=C\left(\ldots, x_{-1}, x_{0}, x_{1}, \ldots\right)=\left(\ldots, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

(a) Show that for C acting on $\ell^{\infty}(\mathbb{Z}), \sigma(C)=\{z \in \mathbb{C}:|z|=1\}$, and that all $z \in \sigma(C)$ are eigenvalues. Are these same z eigenvalues if C acts on $\ell^{p}(\mathbb{Z})$ for $1 \leq p<\infty$?
(b) Now consider general banded Laurent operators on $\ell^{\infty}(\mathbb{Z})$ determined by the coefficients a_{-m}, \ldots, a_{n} :

$$
A=\left(\begin{array}{ccccccccccc}
\ddots & & & \\
\ddots & a_{-m} & \ddots & a_{-1} & a_{0} & a_{1} & \ddots & a_{n} & \ddots & & \\
& \ddots & a_{-m} & \ddots & a_{-1} & a_{0} & a_{1} & \ddots & a_{n} & \ddots & \\
& & \ddots & \ddots
\end{array}\right)
$$

Use the result of Problem 7.y (whether you solved that problem or not) to show that

$$
\sigma(A)=\{a(z):|z|=1\}
$$

where a is the symbol of the operator, defined by the Laurent polynomial

$$
a(z)=\sum_{k=-m}^{n} a_{k} z^{k}
$$

(c) Plot the spectrum $\sigma(A)=\{a(z):|z|=1\}$ for a few interesting symbols of your choosing (e.g., using MATLAB). Below are several examples to whet your appetite.

8.13 Let K be a compact Hermitian operator on a Hilbert space H. Show that if K has infinite rank then the range of K is not closed in H.
7.27 Let V be the Volterra operator V from Problem 7.8:

$$
(V x)(t)=\int_{0}^{t} x(s) \mathrm{d} s, \quad 0<t<1
$$

Show that $V+V^{*}$ has rank 1 .
7.x Suppose A is a bounded linear operator on the Hilbert space H. Show that

$$
\frac{1}{2}\|A\| \leq \sup _{\|x\|=1}|(A x, x)|
$$

(You may find it useful to write A as the sum of Hermitian and skew-Hermitian operators.)
Use this result to show that if $(A x, x)=(B x, x)$ for all $x \in H$, then $A=B$.
An operator $A \in \mathcal{L}(H)$ is called normal provided A commutes with its adjoint, i.e., $A^{*} A=A A^{*}$. Show that A is normal if and only if $\left\|A^{*} x\right\|=\|A x\|$ for all x.

